# **Complete Graphical Criterion for Sequential Covariate Adjustment in Causal Inference**

Min Woo Park<sup>2</sup> Yonghan Jung<sup>1\*</sup>

Sanghack Lee<sup>2\*</sup>

## Contribution

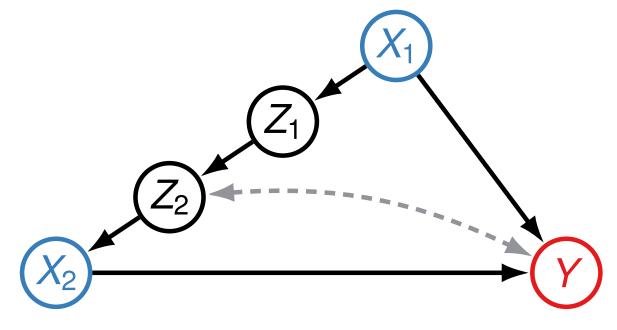
• We presents Sequential Adjustment Criterion (SAC), a sound and com**plete** criterion for sequential covariate adjustment.

**Comparison** with other graphical criteria for covariate adjustments.

| Criterion                  | Static       | Sequential   | Multi-outcome |
|----------------------------|--------------|--------------|---------------|
| Back-Door (BD)             | $\checkmark$ | X            | N/A           |
| Adjustment Criterion (AC)  | $\checkmark$ | X            | N/A           |
| Sequential Back-Door (SBD) | $\checkmark$ | $\checkmark$ | X             |
| multi-outcome SBD (mSBD)   | $\checkmark$ | $\checkmark$ | $\checkmark$  |
| SAC (Ours)                 | $\checkmark$ | $\checkmark$ | $\checkmark$  |

## **Motivation & Background**

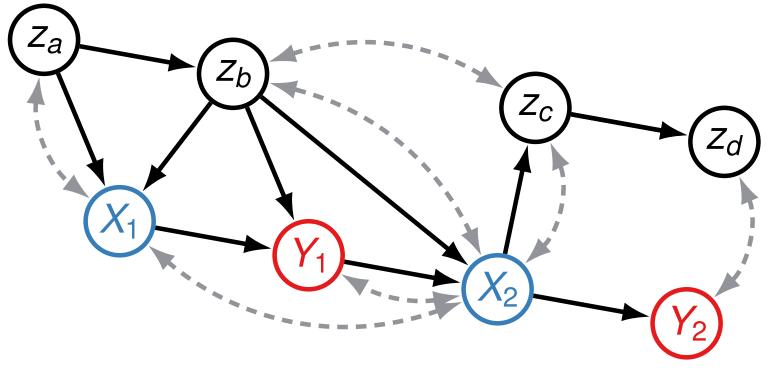
• Covariate Adjustment (CA) The causal effect from treatment X to outcome Y can be expressed in terms of observational data, using covariates **Z**.



• There is a complete graphical criteria Adjustment Criterion (AC) for CA.

$$P(\mathbf{y} \mid do(x_1, x_2)) = \sum_{Z_1, Z_2} P(\mathbf{y} \mid x_1, x_2, Z_1, Z_2) P(Z_1, Z_2)$$

- Sequential Covariate Adjustment (SCA) is one of the most prevalent methods for estimating multi-outcome causal effects from observational data.
- Previously existing graphical criteria for SCA are not complete.  $\Rightarrow$  Not satisfied by existing criterion (mSBD),



but identified as SCA:

 $P(y_1, y_2 \mid do(x_1, x_2))$  $= \sum P(y_2 \mid x_1, x_2, y_1, z_a, z_b, z_c, z_d) P(z_c, z_d, y_1 \mid x_1, z_a, z_b) P(z_a, z_b)$  $Z_a, Z_b, Z_c, Z_d$ 

(<sup>1</sup>Purdue University <sup>2</sup>Seoul National University)

# **Complete Criterion for SCA (Theory)**

Completeness

• Definition (Sequential Covariate Adjustment). Let (X, Y) denote a pair of ordered sets such that  $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_m)$  and  $\mathbf{Y} = (\mathbf{Y}_0, \dots, \mathbf{Y}_m)$ . Let  $\mathbf{Z} \subseteq \mathbf{V} \setminus (\mathbf{X} \cup \mathbf{Y})$ denote vertices ordered as  $\mathbf{Z} = (\mathbf{Z}_1, \dots, \mathbf{Z}_m)$ . Define  $\mathbf{H}_i := \mathbf{X}^{(i)} \cup \mathbf{Y}^{(i)} \cup \mathbf{Z}^{(i)}$ .

 $P(\mathbf{y} \mid do(\mathbf{x})) = \sum \prod P(\mathbf{z}_{j+1}, \mathbf{y}_j \mid \mathbf{h}_{j-1}, \mathbf{x}_j, \mathbf{z}_j).$ 

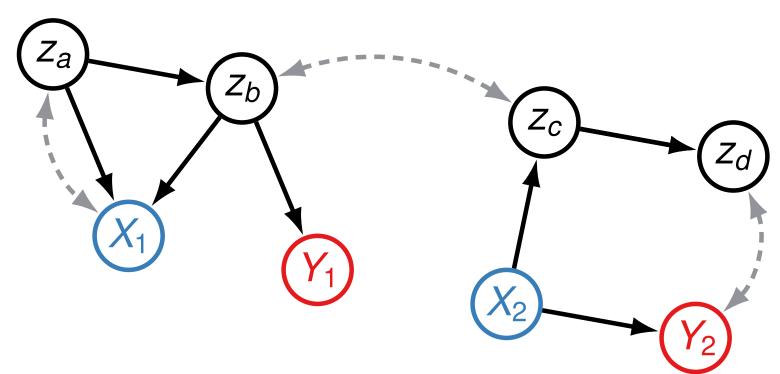
# Sequential Adjustment Criterion (SAC).

Given  $\mathbf{Z} := (\mathbf{Z}_1, \dots, \mathbf{Z}_m)$  where each  $\mathbf{Z}_i$  is non-descendant of  $\mathbf{X}^{\geq i+1}, \mathbf{Z}_i$ is said to satisfy sequential adjustment criterion (SAC) if the following conditions are satisfied for  $i = 1, \dots, m$ :

- 1.  $X_i$  and  $\mathbf{Y}^{\geq i}$  are d-seperated given  $\mathbf{Z}_i \cup \mathbf{H}_{i-1}$  in subgraph, proper sequential backdoor graph  $(\mathcal{G}_{\overline{\mathbf{X}} \ge i+1})_{\text{pbd}}^{X_i, \mathbf{Y} \le i}$ . 2.  $\mathbf{Z}_i$  is not a descendant of proper causal path set from
- $X_i$  to  $\mathbf{Y}^{\geq i}$ .

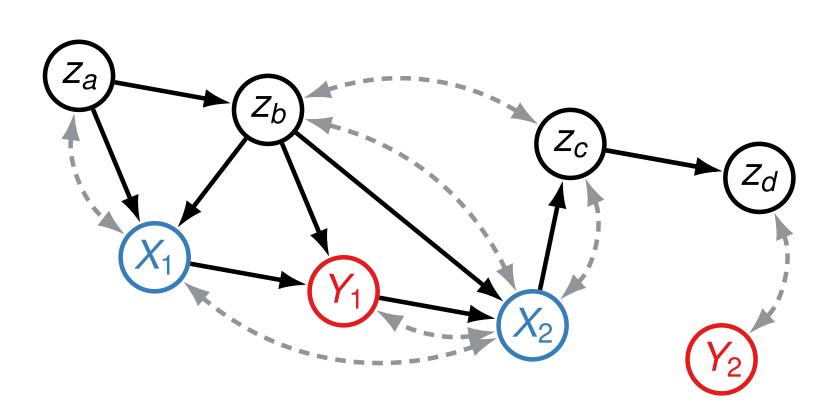
### • Key Example Check back-door in subgraph according to the topological order of **X**.

(1) Subgraph for  $X_1$ : Given  $Z_1 = \{Z_a, Z_b\}, X_1$  and  $\{Y_1, Y_2\}$  are **d-seperated** in the subgraph.



(2) Subgraph for  $X_2$ :

Given history  $\mathbf{H}_1 = \{Z_a, Z_b, X_1, Y_1\}$  and  $\mathbf{Z}_2 = \{Z_c, Z_d\}, X_2$  and  $Y_2$  are **dseperated** in the subgraph.







 $\therefore$  **Z** = ({*Z<sub>a</sub>*, *Z<sub>b</sub>*}, {*Z<sub>c</sub>*, *Z<sub>d</sub>*}) satisfies SAC.

 $P(y_1, y_2 \mid do(x_1, x_2))$  $Z_a, Z_b, Z_c, Z_d$ 

### Soundness and Completeness

Z satisfies SAC

- porating existing covariate adjustment criteria.
- $\checkmark$  mSBD  $\Longrightarrow$  SAC.
  - The SAC can encompass the mSBD.
- ✓ Adjustment Criterion (AC)  $\implies$  SAC.

  - $P(\mathbf{y} \mid d\mathbf{o}(\mathbf{x})) = \sum_{\mathbf{z}} P(\mathbf{y} \mid \mathbf{x}, \mathbf{z}) P(\mathbf{z}).$

# **Constructive SAC (Algorithm)**

- Construction of Sequential Adjustment Set: A method to construct a sequential adjustment set.
- Input: A disjoint pair of ordered set  $(\mathbf{X}, \mathbf{Y})$  and a causal graph  $\mathcal{G}$ .
- **Output**: An ordered set  $\mathbf{Z}^{an} := (\mathbf{Z}_1^{an}, \cdots, \mathbf{Z}_m^{an})$ .

 $\exists (\mathbf{Z}_1, \cdots, \mathbf{Z}_m)$  satisfying SAC  $\Leftrightarrow \mathbf{Z}^{an}$  satisfies SAC.

the adjustment.

 $\mathbf{Z}^{\min} = (\{Z_a, Z_b\}, \emptyset)$  satisfies SAC.

$$P(y_1, y_2 \mid do(x_1, x_2))$$
  
=  $\sum_{Z_a, Z_b} P(y_2 \mid x_1, x_2, x_3)$ 

Sequential Adjustment Criterion (SAC), a sound and complete criterion for sequential covariate adjustment.

**Constructive Sequential Adjustment Criterion** identifies a set that satisfies the sequential adjustment criterion *if and only if* the causal effect can be expressed as a sequential covariate adjustment.

An algorithm minSCA for identifying a minimal sequential covariate adjustment set ensuring that no unnecessary vertices are included.

 $= \sum P(y_2 \mid x_1, x_2, y_1, z_a, z_b, z_c, z_d) P(z_c, z_d, y_1 \mid x_1, z_a, z_b) P(z_a, z_b)$ 

 $\iff$  **Z** is expressible as SCA.

• The soundness and completeness of SAC provide extensive coverage, incor-

• The AC is a special case of the SAC where m = 1.

 $\rightarrow$  minSCA outputs the smallest subset of  $Z^{an}$  without sacrificing the validity of

 $y_1, z_a, z_b) P(y_1 \mid x_1, z_a, z_b) P(z_a, z_b)$ 

## Conclusion