

Complete Graphical Criterion for Sequential Covariate Adjustment in Causal Inference

Yonghan Jung, Min Woo Park, Sanghack Lee

Advisor Prof. Sanghack Lee, Causality Lab, SNU Dec 6th, 2024

Contents

- Causality Lab
 Causal Inference
- 3 Related Works
- 4 Main Theory5 Conclusion

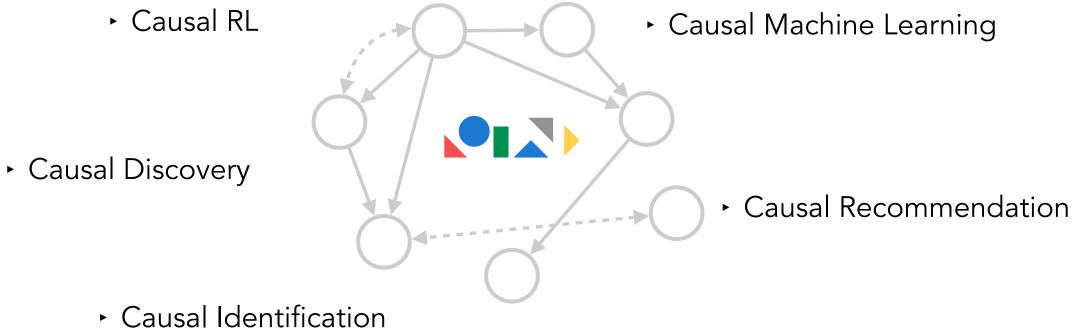
Causality Lab

Causality Lab

Causal Representation Learning

Causal Bandit

Causal NLP



Causal Estimation

- Causal Fairness
- Causal Explainability

Causal Inference

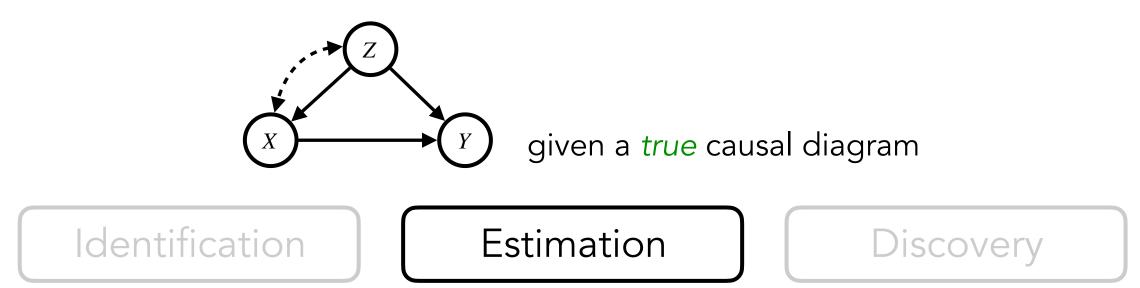
Causal Inference

Identification

Estimation

Discovery

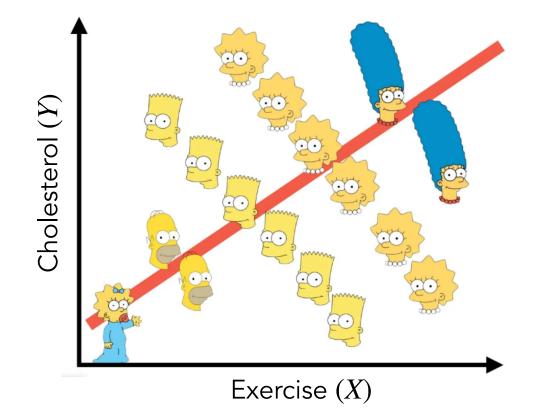
Whether the causal effect $P(\mathbf{y} \mid do(\mathbf{x}))$ can be expressed in terms of the observational distribution.

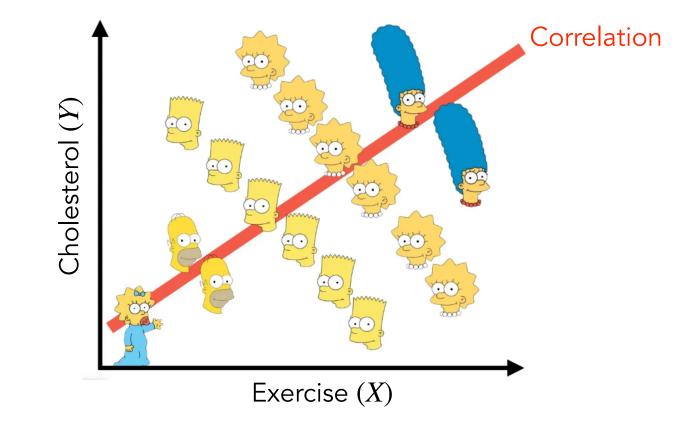


Efficient estimation of causal effect $P(\mathbf{y} \mid do(\mathbf{x}))$ from the observational distribution.

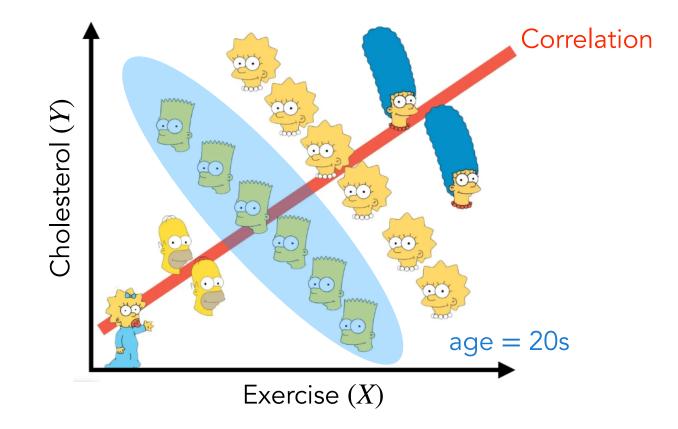
Discovery of a causal diagram from an observational datasets.

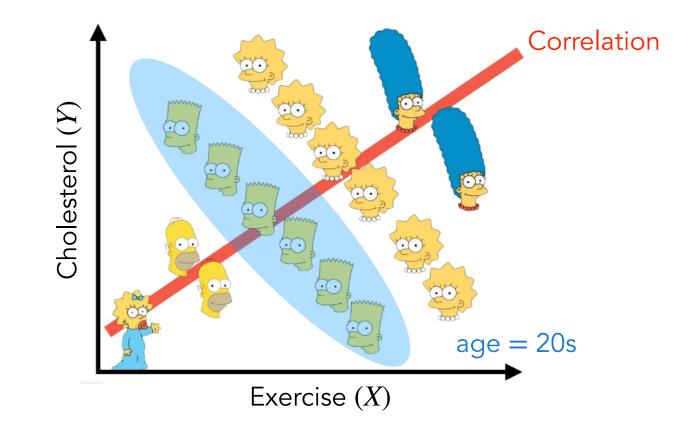
Whether the causal effect $P(\mathbf{y} \mid do(\mathbf{x}))$ can be expressed in terms of the observational distribution.



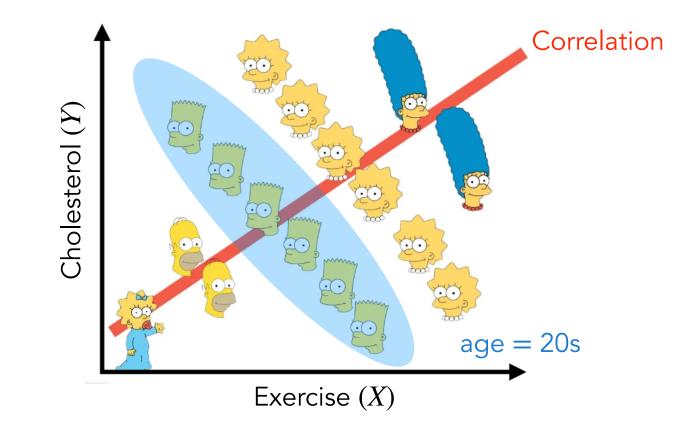


More exercise \Rightarrow More Cholesterol?

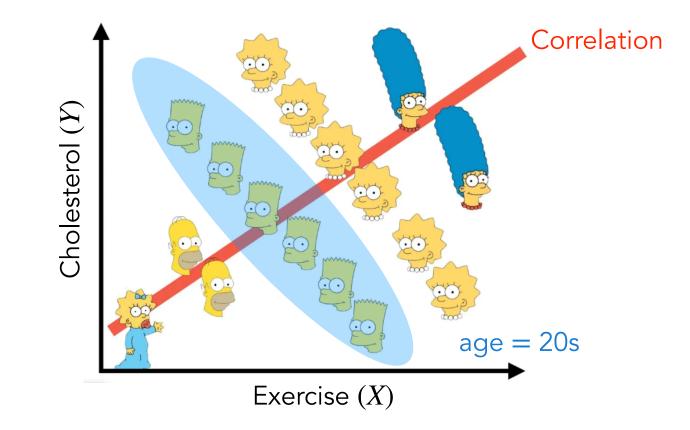




More exercise \Rightarrow Lower Cholesterol (per age group)

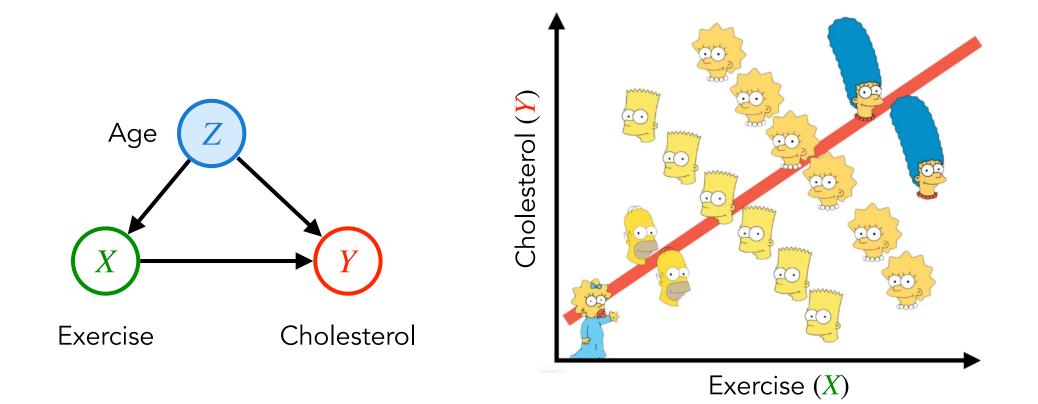


This difference is called confounding bias.

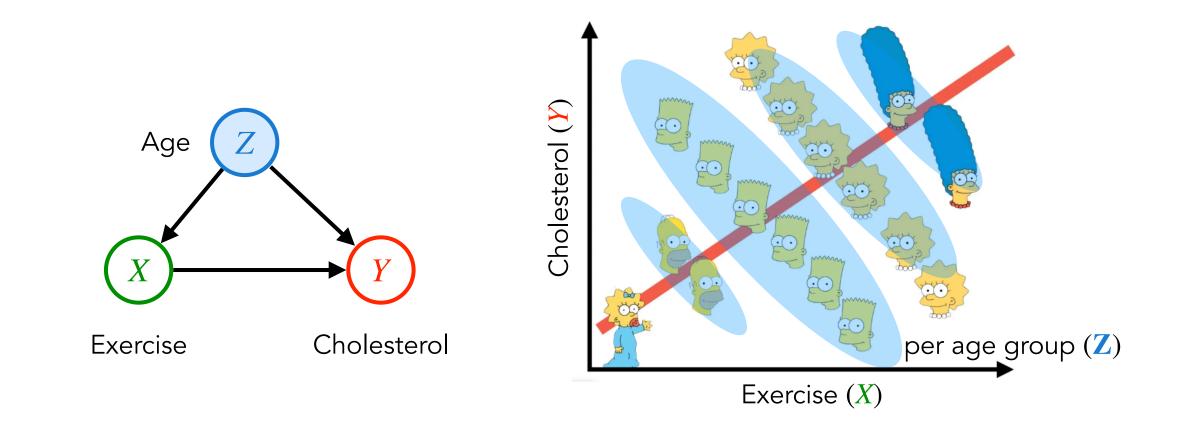


Q. Is confounding bias removable?

Covariate Adjustment

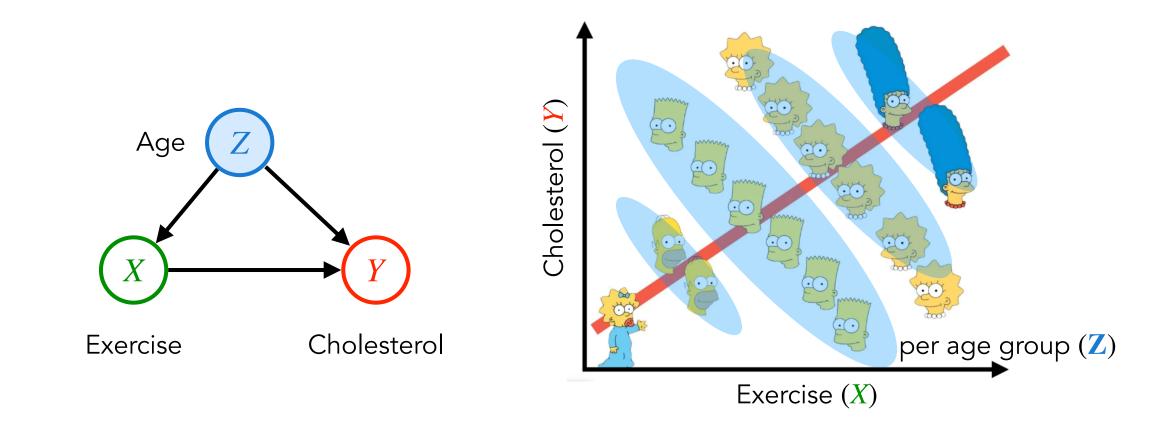


Covariate Adjustment

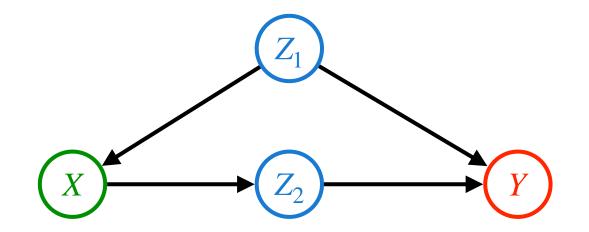


We can compute the causal effect $P(\mathbf{y} \mid do(\mathbf{x}))$ by adjusting the confounder Z.

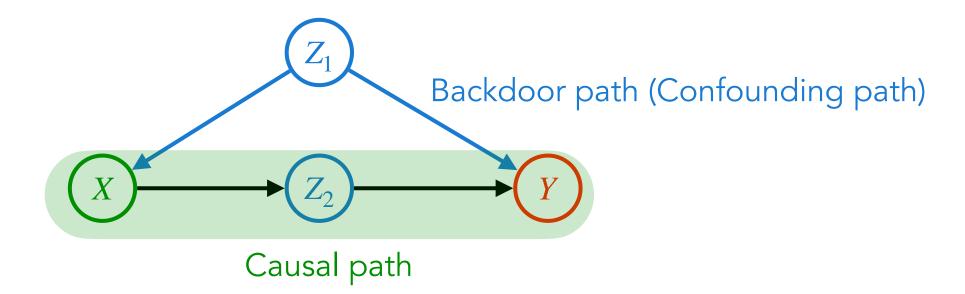
Covariate Adjustment



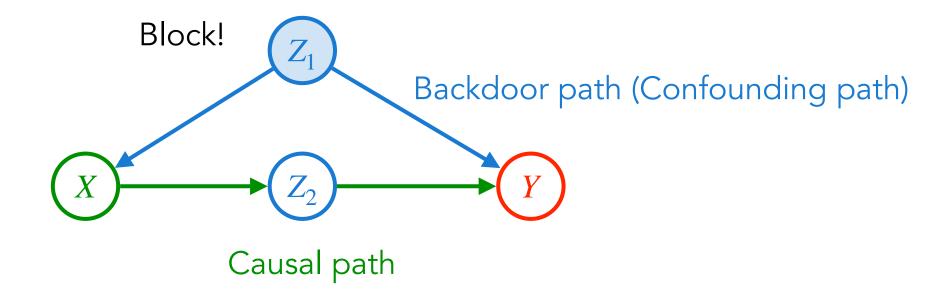
We can compute the causal effect $P(\mathbf{y} \mid do(\mathbf{x}))$, adjusting the confounder \mathbf{Z} . Covariate Adjustment (CA): $P(\mathbf{y} \mid do(\mathbf{x})) = \sum P(\mathbf{y} \mid \mathbf{x}, \mathbf{z})P(\mathbf{z})$



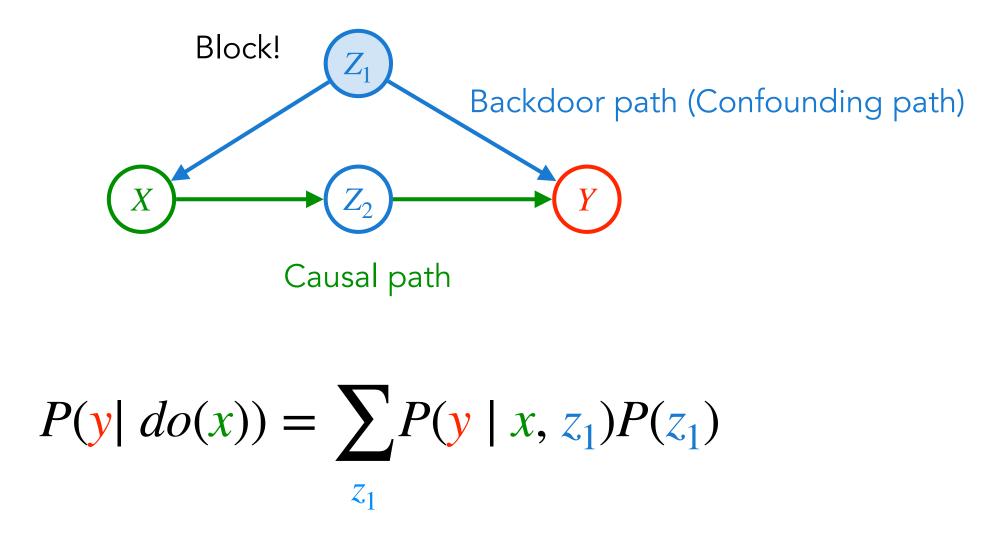
 Z_1 Backdoor path (Confounding path) XCausal path



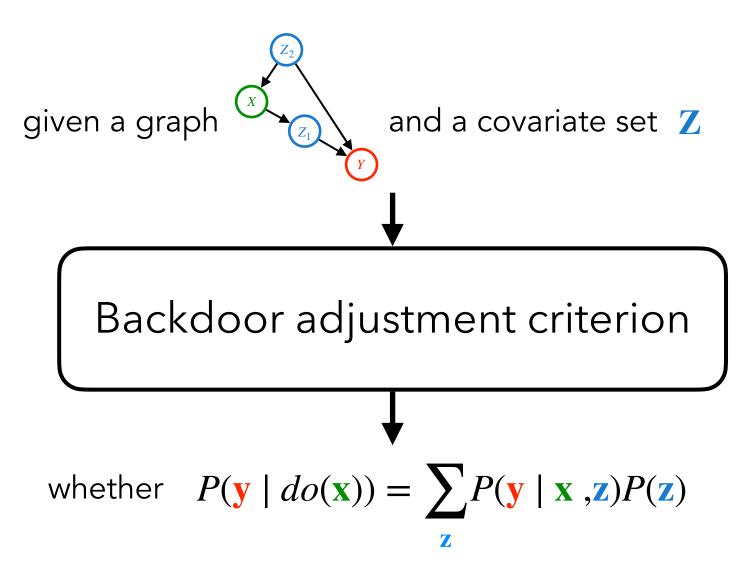
Correlation = Causal effect + Counfounding bias

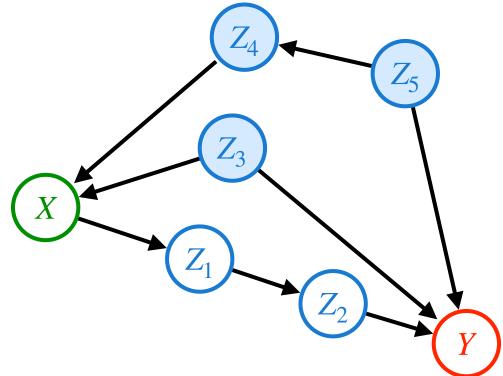


Correlation = Causal effect + Counfounding bias



Backdoor Criterion Related work

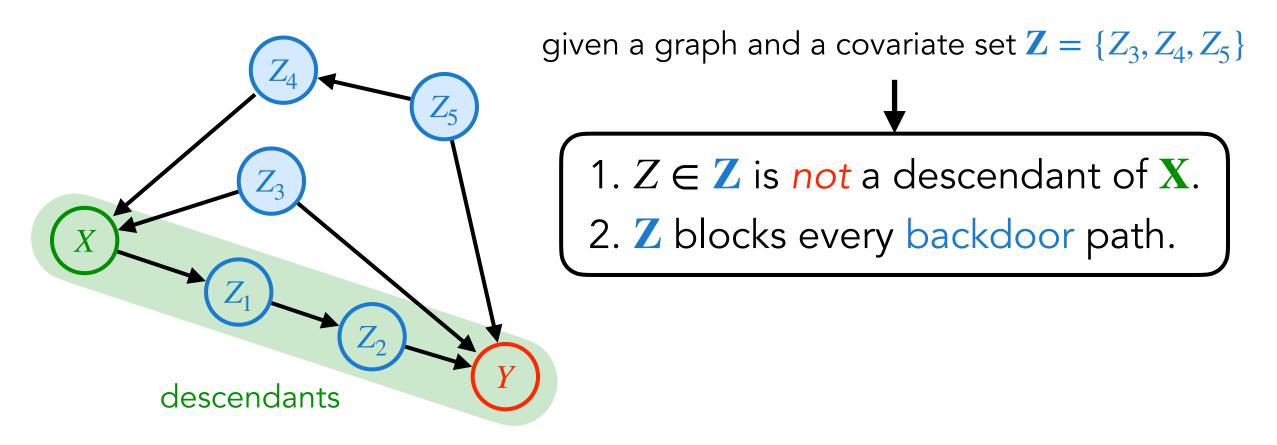


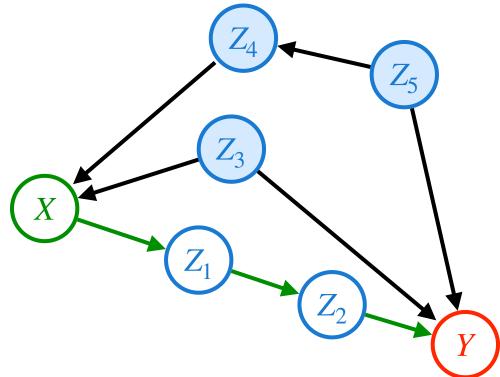


given a graph and a covariate set $\mathbb{Z} = \{Z_3, Z_4, Z_5\}$

1. $Z \in \mathbb{Z}$ is *not* a descendant of **X**.

2. Z blocks every backdoor path.

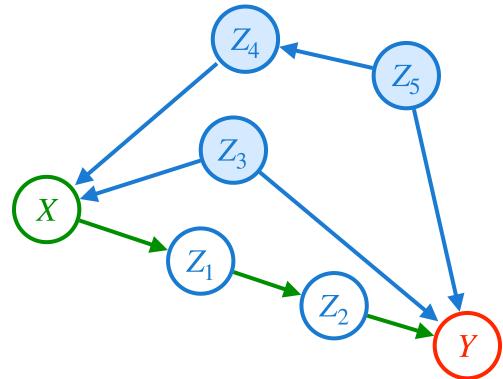




given a graph and a covariate set $\mathbb{Z} = \{Z_3, Z_4, Z_5\}$

 \mathbf{X} . $Z \in \mathbf{Z}$ is not a descendant of \mathbf{X} .

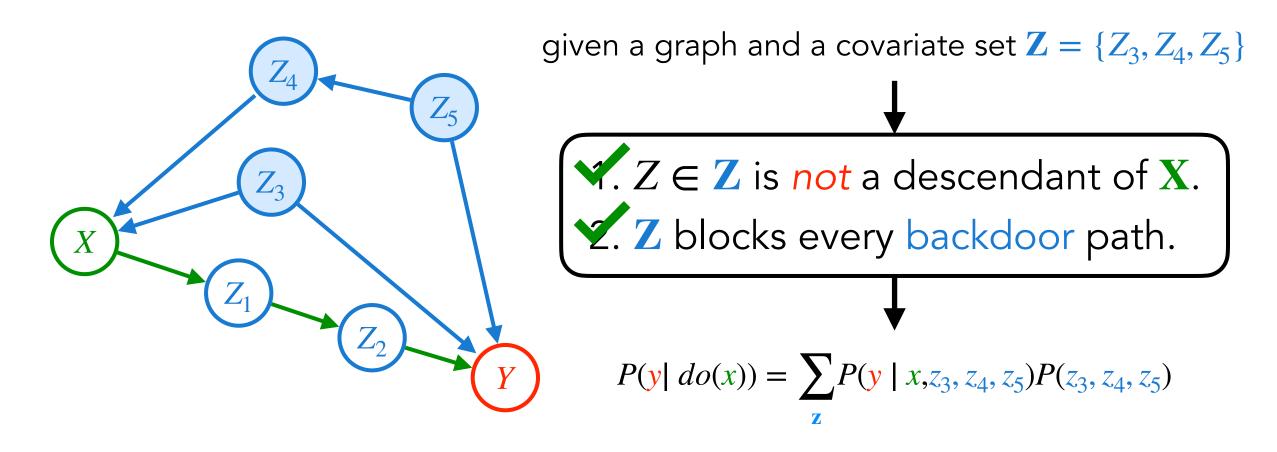
2. Z blocks every backdoor path.



given a graph and a covariate set $\mathbb{Z} = \{Z_3, Z_4, Z_5\}$

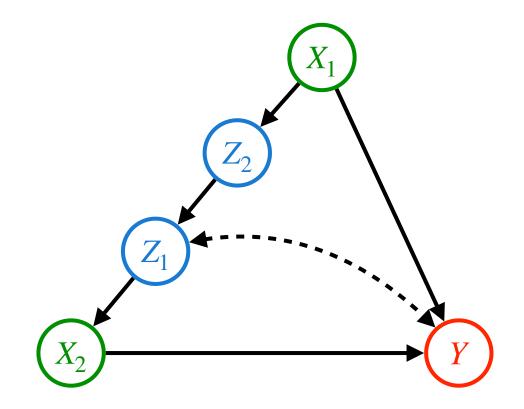
 $X \in \mathbb{Z}$ is not a descendant of X.

2. Z blocks every backdoor path.

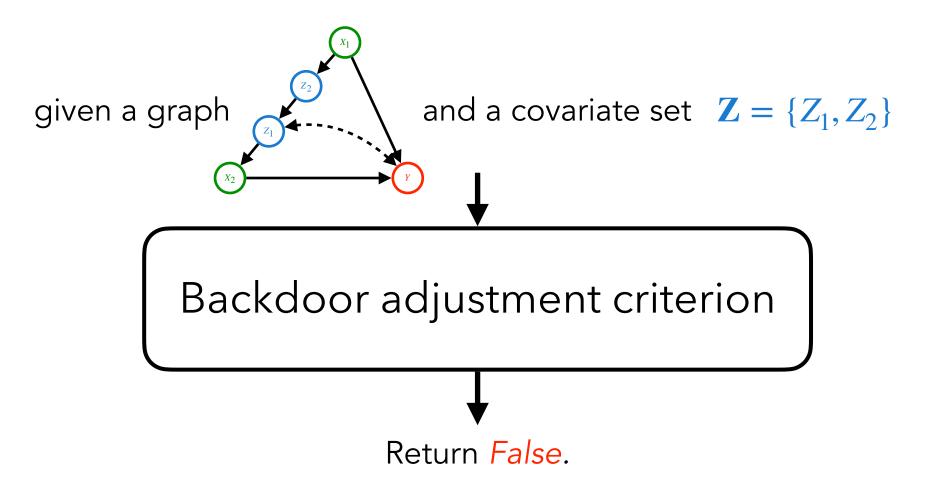


Backdoor adjustment criterion - sufficient but not necessary

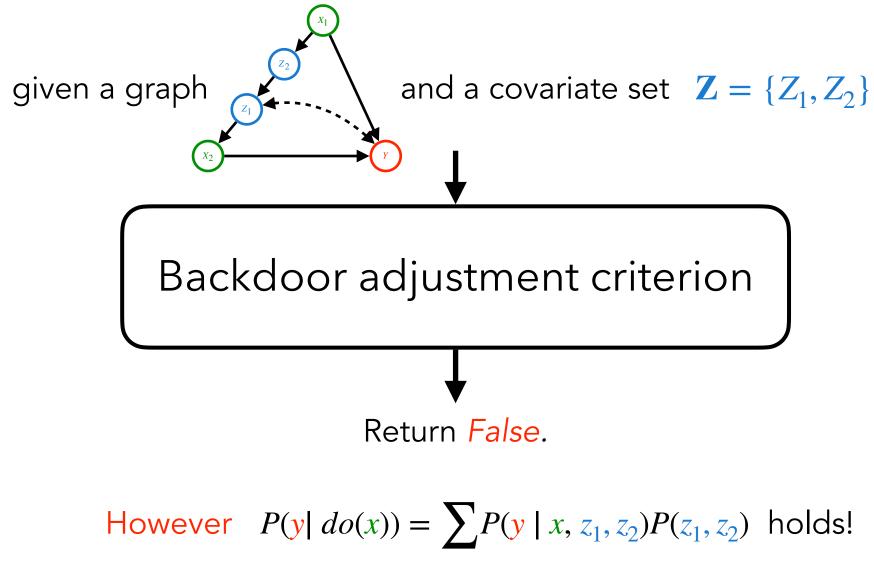
Backdoor criterion is sufficient, but not necessary for Covariate Adjustment.



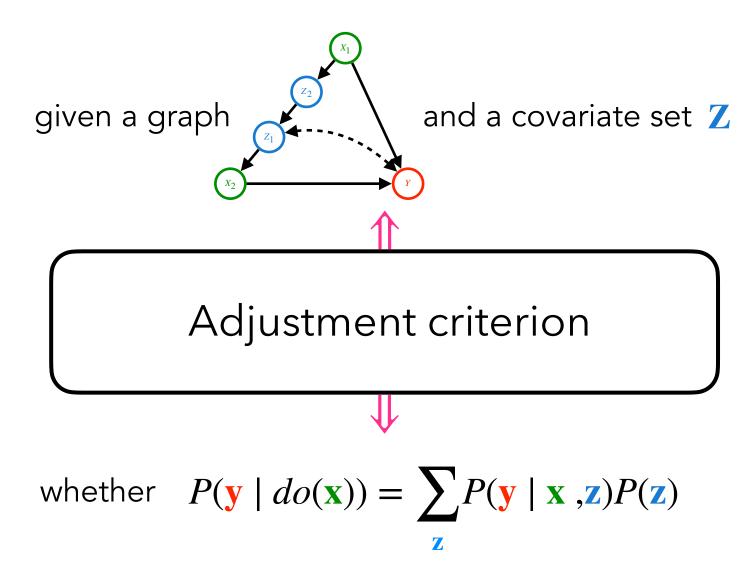
Backdoor adjustment criterion - sufficient but not necessary

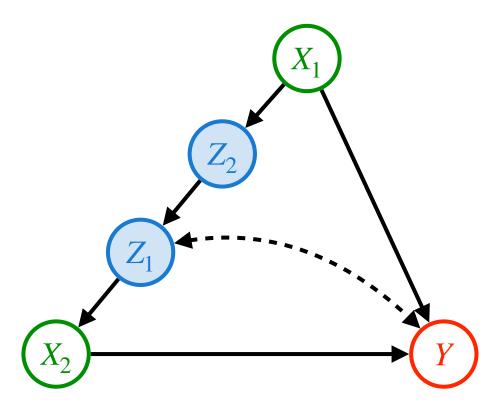


Backdoor adjustment criterion - sufficient but not necessary



Adjustment Criterion Related work

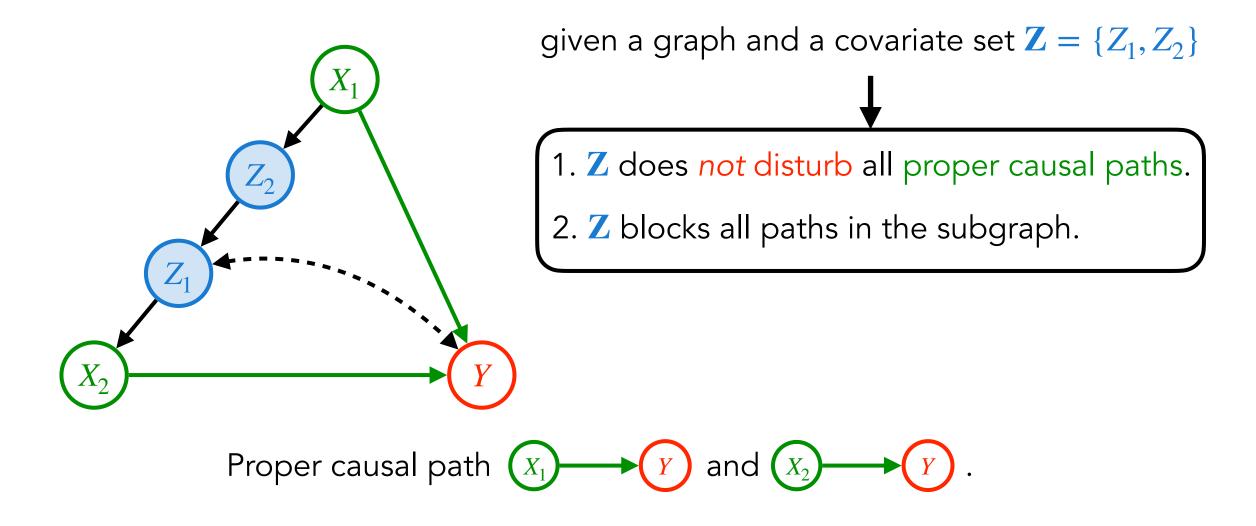


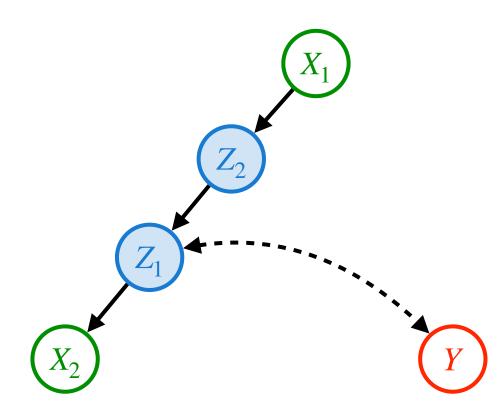


given a graph and a covariate set $\mathbf{Z} = \{Z_1, Z_2\}$

1. Z does *not* disturb all proper causal paths.

2. \mathbb{Z} blocks all paths in the subgraph.

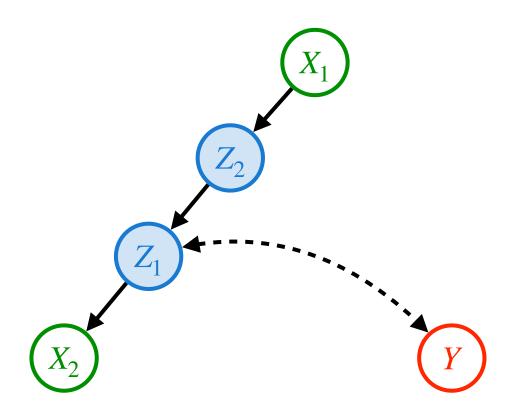




given a graph and a covariate set $\mathbf{Z} = \{Z_1, Z_2\}$

 \mathbf{Y} . Z does not disturb all proper causal paths.

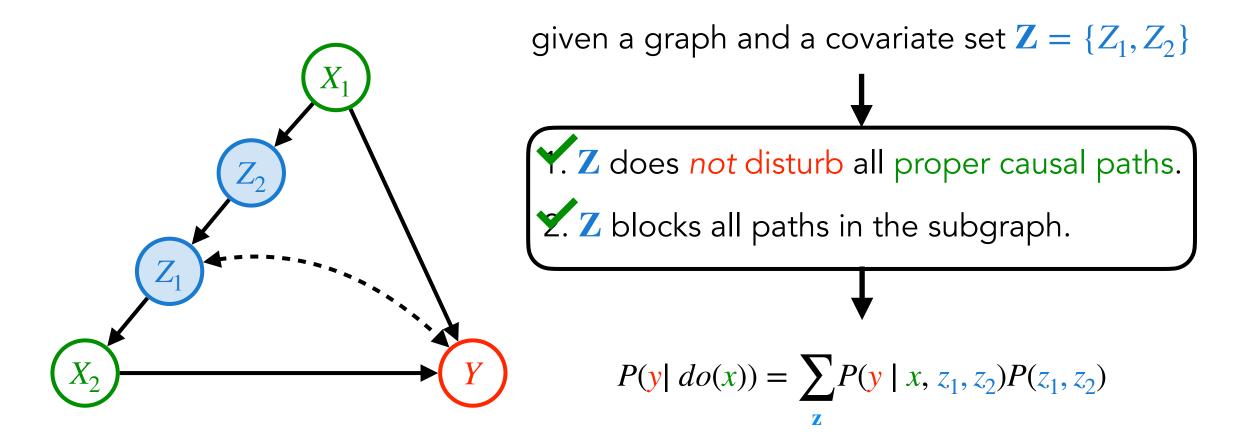
2. \mathbb{Z} blocks all paths in the subgraph.

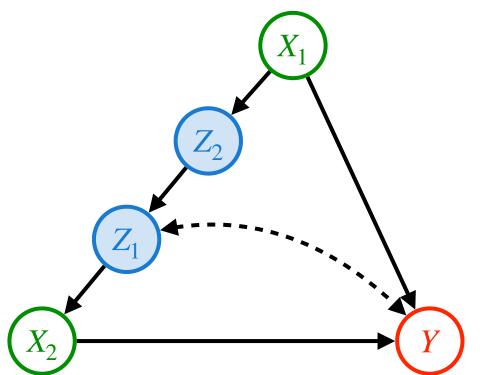


given a graph and a covariate set $\mathbf{Z} = \{Z_1, Z_2\}$

 \mathbf{Y} . Z does *not* disturb all proper causal paths.

 \mathbf{Y} . Z blocks all paths in the subgraph.





given a graph and a covariate set $\mathbf{Z} = \{Z_1, Z_2\}$ 1. Z does *not* disturb all proper causal paths. 2. \mathbb{Z} blocks all paths in the subgraph. **Completeness!** $P(\mathbf{y} \mid do(x)) = \sum P(\mathbf{y} \mid x, z_1, z_2) P(z_1, z_2)$

Sequential Adjustment Criterion Main Theory

Covariate Adjustment (CA)

$$P(\mathbf{y} \mid do(\mathbf{x})) = \sum_{\mathbf{z}} P(\mathbf{z}) P(\mathbf{y} \mid \mathbf{x}, \mathbf{z})$$

Covariate Adjustment (CA)

$$P(\mathbf{y} \mid do(\mathbf{x})) = \sum_{\mathbf{z}} P(\mathbf{z}) P(\mathbf{y} \mid \mathbf{x}, \mathbf{z})$$

Sequential Covariate Adjustment (SCA)

$$P(\mathbf{y} \mid do(\mathbf{x})) = \sum_{\mathbf{z}} \prod_{j=0}^{m} P(\mathbf{z}_{j+1}, \mathbf{y}_{j} \mid \mathbf{x}_{j-1}, \mathbf{y}_{j-1}, \mathbf{z}_{j-1}, \mathbf{x}_{j}, \mathbf{z}_{j}) P(\mathbf{z}_{j})$$

Covariate Adjustment (CA)

$$P(\mathbf{y} \mid do(\mathbf{x})) = \sum_{\mathbf{z}} P(\mathbf{z}) P(\mathbf{y} \mid \mathbf{x}, \mathbf{z})$$

Sequential Covariate Adjustment (SCA)

$$P(\mathbf{y} \mid do(\mathbf{x})) = \sum_{\mathbf{z}} \prod_{j=0}^{m} P(\mathbf{z}_{j+1}, \mathbf{y}_{j} \mid \mathbf{x}_{j-1}, \mathbf{y}_{j-1}, \mathbf{z}_{j-1}, \mathbf{x}_{j}, \mathbf{z}_{j}) P(\mathbf{z}_{j})$$

e.g. $P(\mathbf{r} \mid do(\mathbf{a})) = \sum P(\mathbf{s}_1) P(\mathbf{r}_1, \mathbf{s}_2 \mid \mathbf{a}_1, \mathbf{s}_1) P(\mathbf{r}_2, \mathbf{s}_3 \mid \mathbf{a}_1, \mathbf{r}_1, \mathbf{s}_1, \mathbf{a}_2, \mathbf{s}_2) \cdots$

Covariate Adjustment (CA)

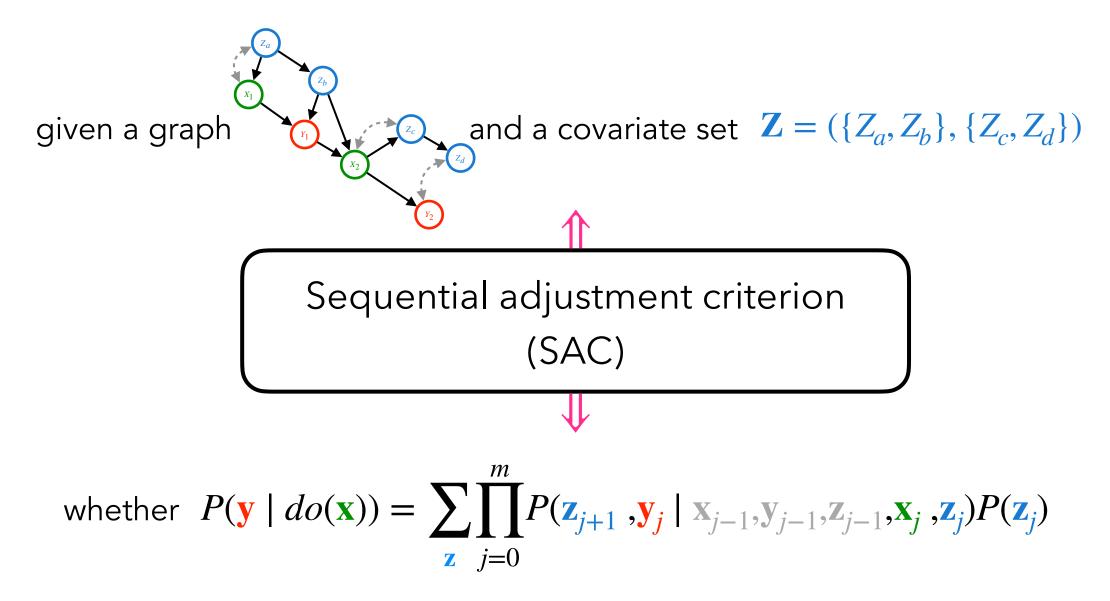
$$P(\mathbf{y} \mid do(\mathbf{x})) = \sum_{\mathbf{z}} P(\mathbf{z}) P(\mathbf{y} \mid \mathbf{x}, \mathbf{z})$$

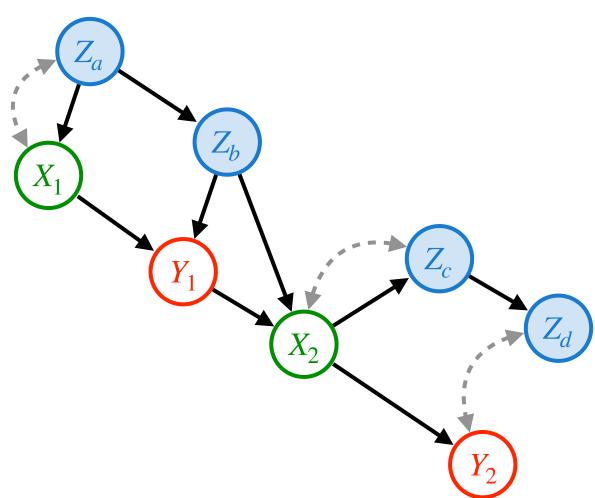
CA is a special case of SCA where m = 1SCA is generalized version of CA!

Sequential Covariate Adjustment (SCA)

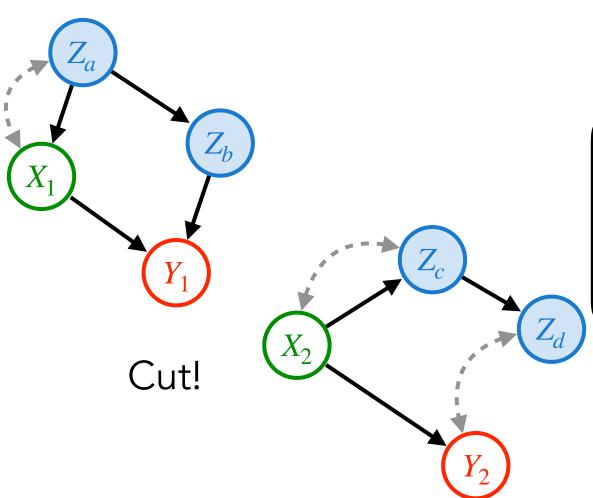
$$P(\mathbf{y} \mid do(\mathbf{x})) = \sum_{\mathbf{z}} \prod_{j=0}^{m} P(\mathbf{z}_{j+1}, \mathbf{y}_{j} \mid \mathbf{x}_{j-1}, \mathbf{y}_{j-1}, \mathbf{z}_{j-1}, \mathbf{x}_{j}, \mathbf{z}_{j}) P(\mathbf{z}_{j})$$

e.g. $P(\mathbf{r} \mid do(\mathbf{a})) = \sum P(\mathbf{s}_1) P(\mathbf{r}_1, \mathbf{s}_2 \mid \mathbf{a}_1, \mathbf{s}_1) P(\mathbf{r}_2, \mathbf{s}_3 \mid \mathbf{a}_1, \mathbf{r}_1, \mathbf{s}_1, \mathbf{a}_2, \mathbf{s}_2) \cdots$

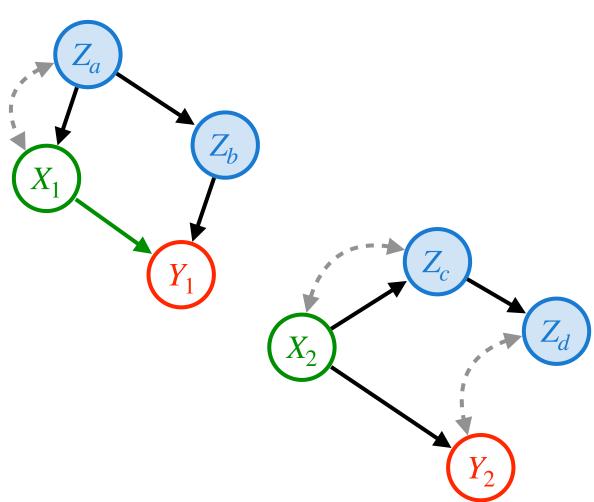




given a graph and a covariate set $Z = (\{Z_a, Z_b\}, \{Z_c, Z_d\})$ \downarrow 1. $Z_1 = \{Z_a, Z_b\}$ does *not* disturb all local proper causal paths. 2. $Z_1 = \{Z_a, Z_b\}$ blocks all paths in the subgraph.

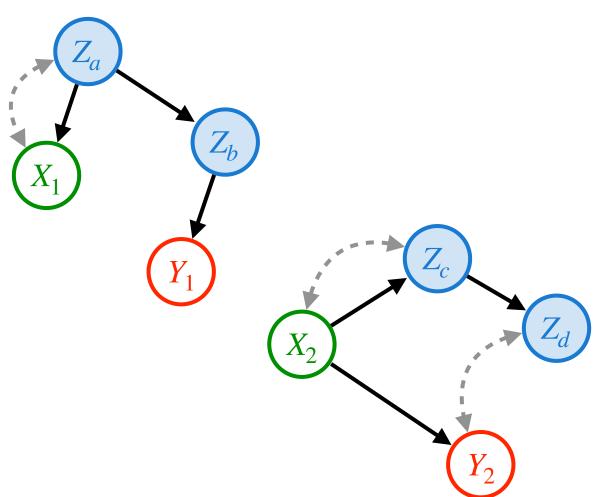


given a graph and a covariate set $\mathbf{Z} = (\{Z_a, Z_b\}, \{Z_c, Z_d\})$ \mathbf{V} 1. $\mathbf{Z}_1 = \{Z_a, Z_b\}$ does *not* disturb all local proper causal paths. 2. $\mathbf{Z}_1 = \{Z_a, Z_b\}$ blocks all paths in the subgraph.

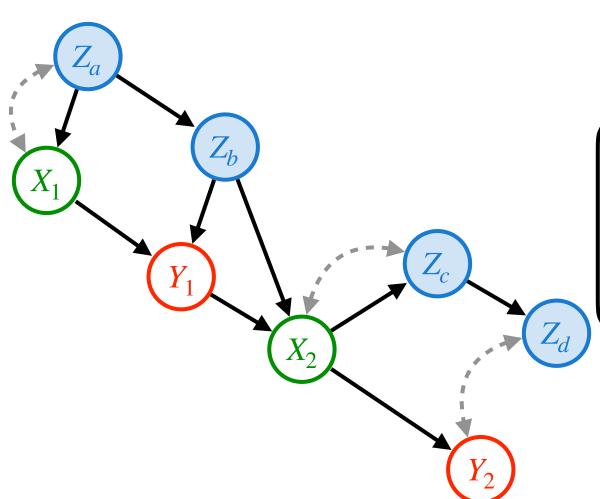


given a graph and a covariate set $\mathbf{Z} = (\{Z_a, Z_b\}, \{Z_c, Z_d\})$ \mathbf{V} 1. $\mathbf{Z}_1 = \{Z_a, Z_b\}$ does *not* disturb all local proper causal paths. 2. $\mathbf{Z}_1 = \{Z_a, Z_b\}$ blocks all paths in the subgraph.

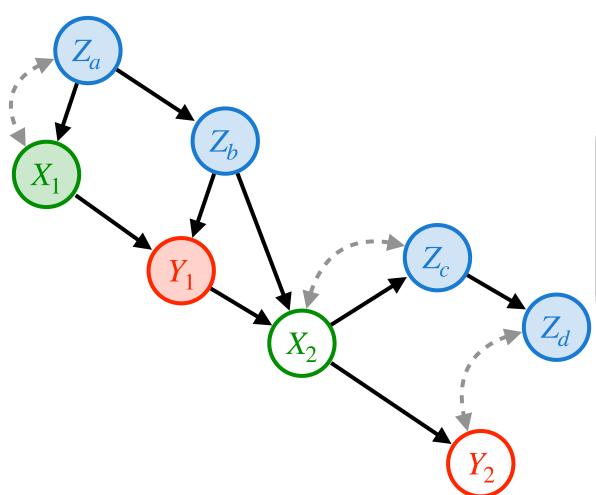
Proper causal path $X_1 \longrightarrow Y_1$



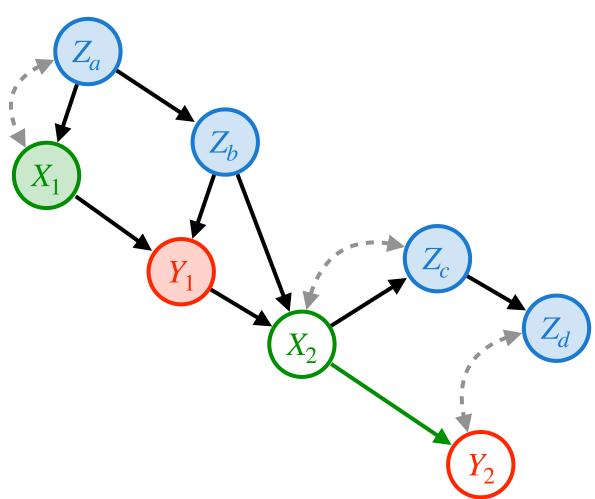
given a graph and a covariate set $\mathbf{Z} = (\{Z_a, Z_b\}, \{Z_c, Z_d\})$ \checkmark $\mathbf{Z}_1 = \{Z_a, Z_b\}$ does *not* disturb all local proper causal paths. 2. $\mathbf{Z}_1 = \{Z_a, Z_b\}$ blocks all paths in the subgraph.



given a graph and a covariate set $Z = (\{Z_a, Z_b\}, \{Z_c, Z_d\})$ \downarrow 1. $Z_2 = \{Z_c, Z_d\}$ does *not* disturb all local proper causal paths. 2. $Z_2 = \{Z_c, Z_d\}$ blocks all paths in the subgraph.

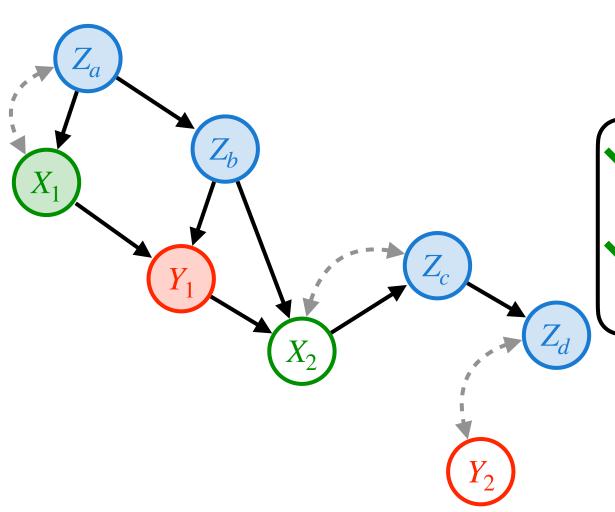


given a graph and a covariate set $\mathbf{Z} = (\{Z_a, Z_b\}, \{Z_c, Z_d\})$ \mathbf{V} 1. $\mathbf{Z}_2 = \{Z_c, Z_d\}$ does *not* disturb all local proper causal paths. 2. $\mathbf{Z}_2 = \{Z_c, Z_d\}$ blocks all paths in the subgraph.

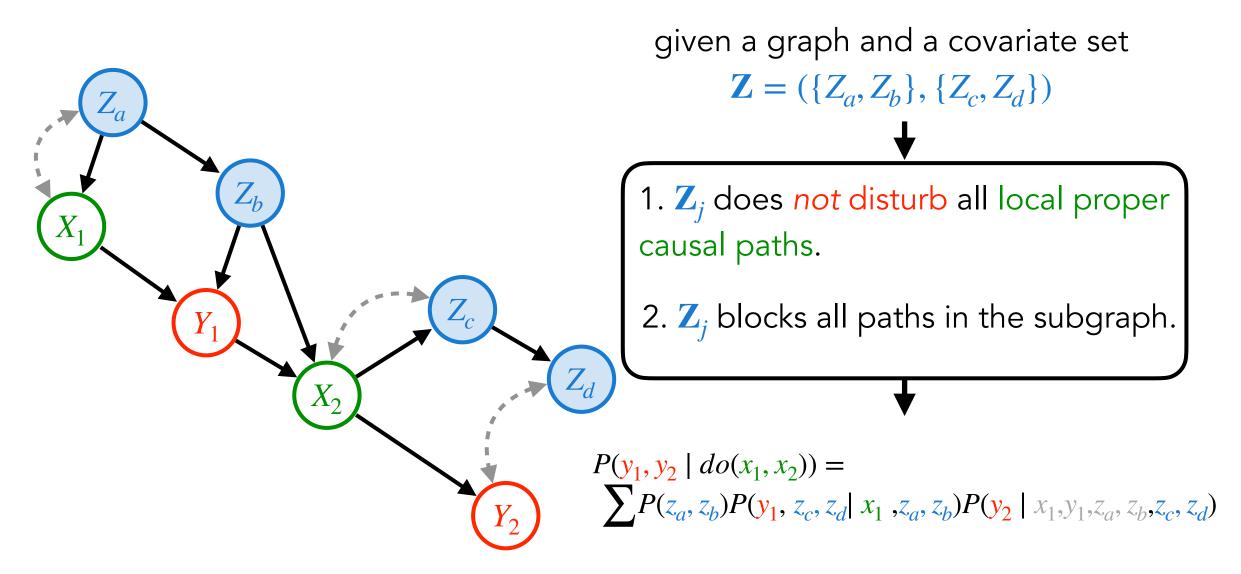


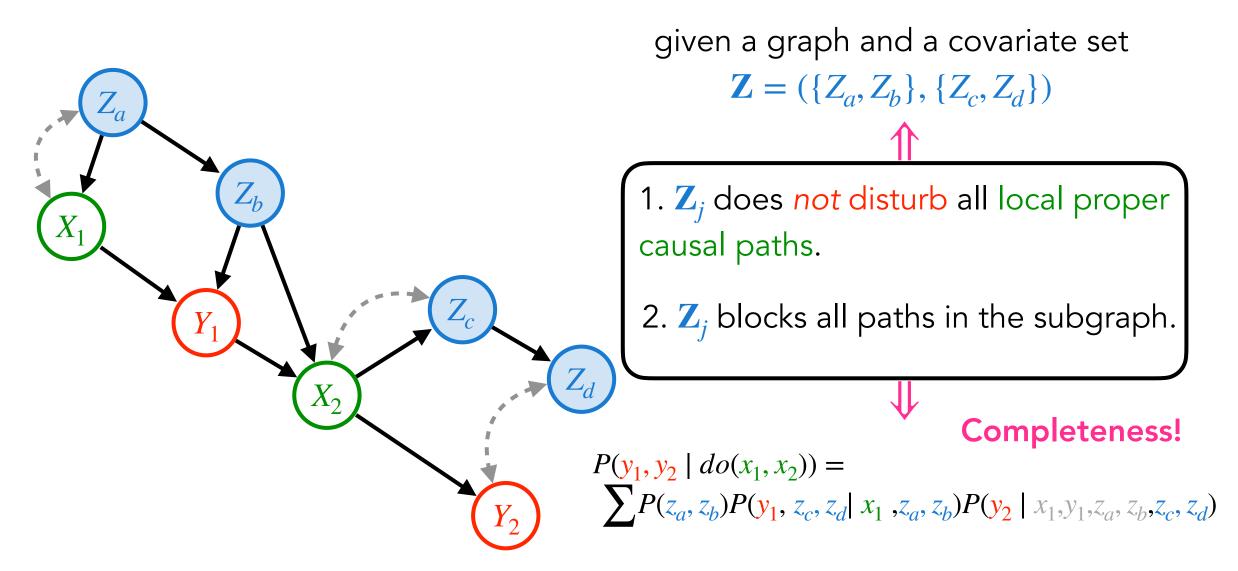
given a graph and a covariate set $Z = (\{Z_a, Z_b\}, \{Z_c, Z_d\})$ \downarrow 1. $Z_2 = \{Z_c, Z_d\}$ does *not* disturb all local proper causal paths. 2. $Z_2 = \{Z_c, Z_d\}$ blocks all paths in the subgraph.

Proper causal path $X_2 \rightarrow Y_2$



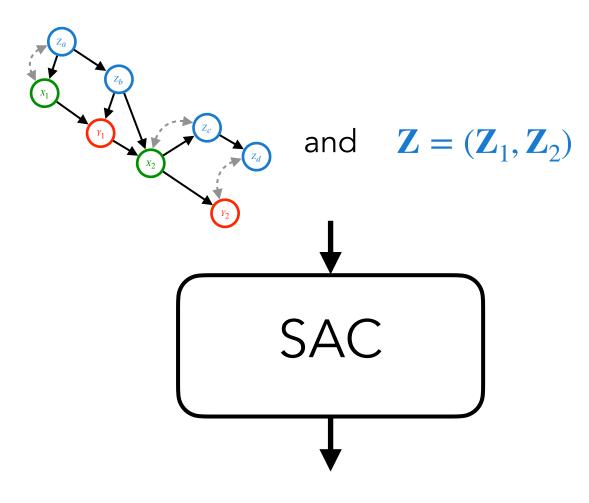
given a graph and a covariate set $Z = (\{Z_a, Z_b\}, \{Z_c, Z_d\})$ \checkmark $Z_2 = \{Z_c, Z_d\}$ does *not* disturb all local proper causal paths. \checkmark $Z_2 = \{Z_c, Z_d\}$ blocks all paths in the subgraph.





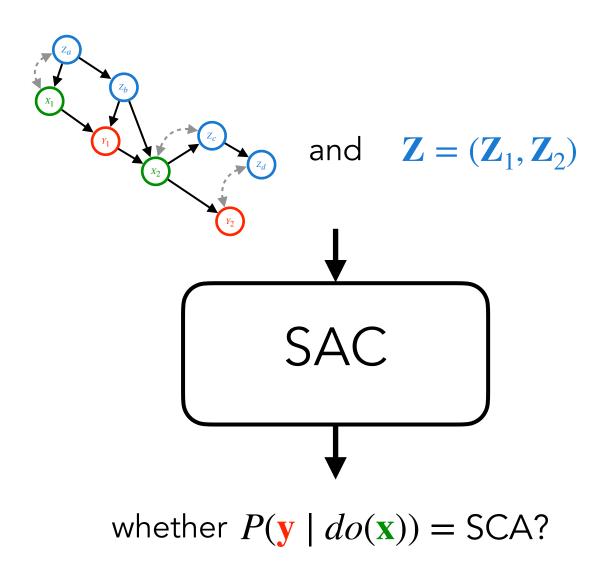
minSCA Main Theory

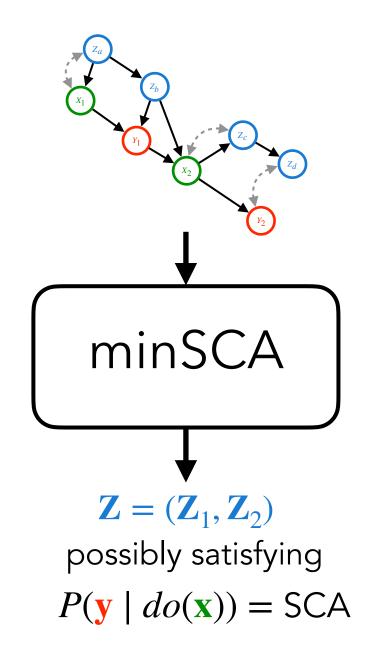
Constuctive SCA algorithm

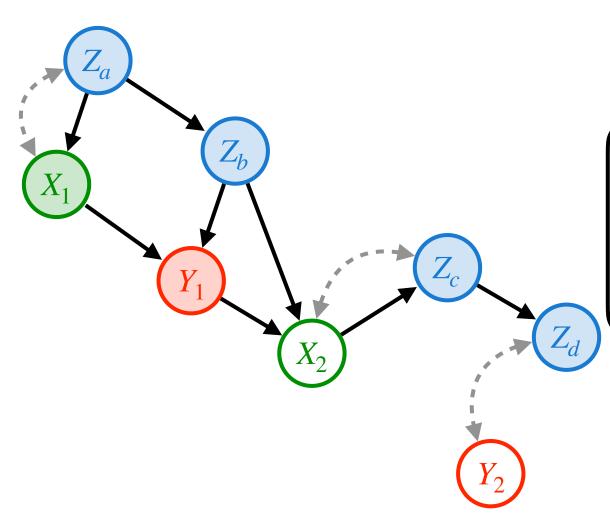


whether $P(\mathbf{y} \mid do(\mathbf{x})) = SCA?$

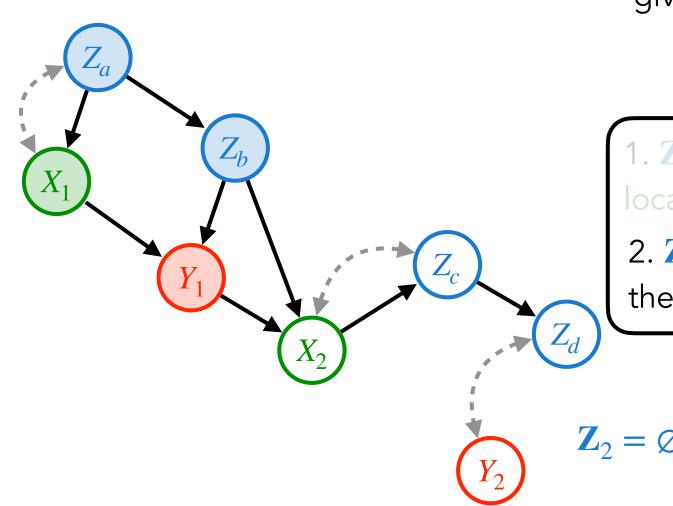
Constuctive SCA algorithm





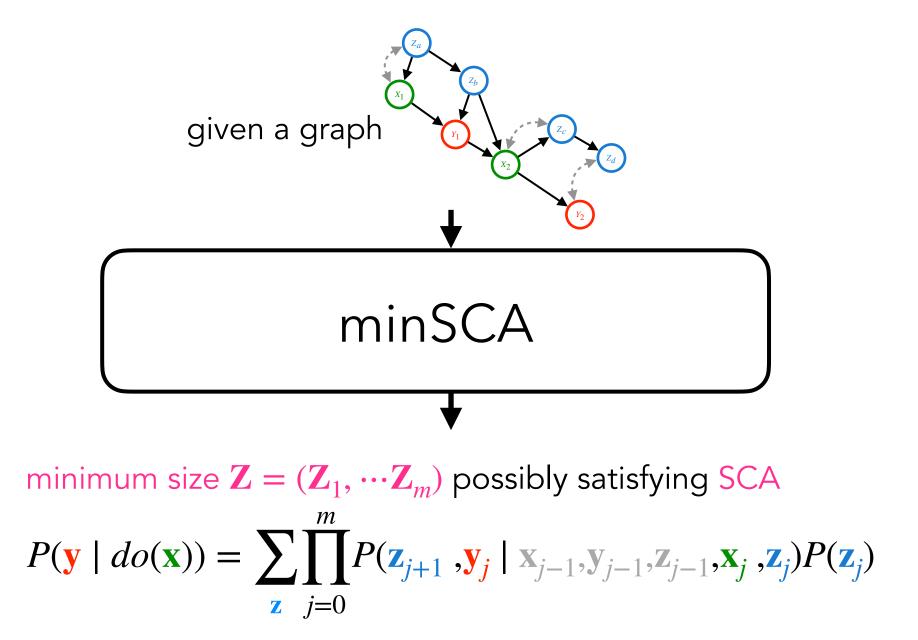


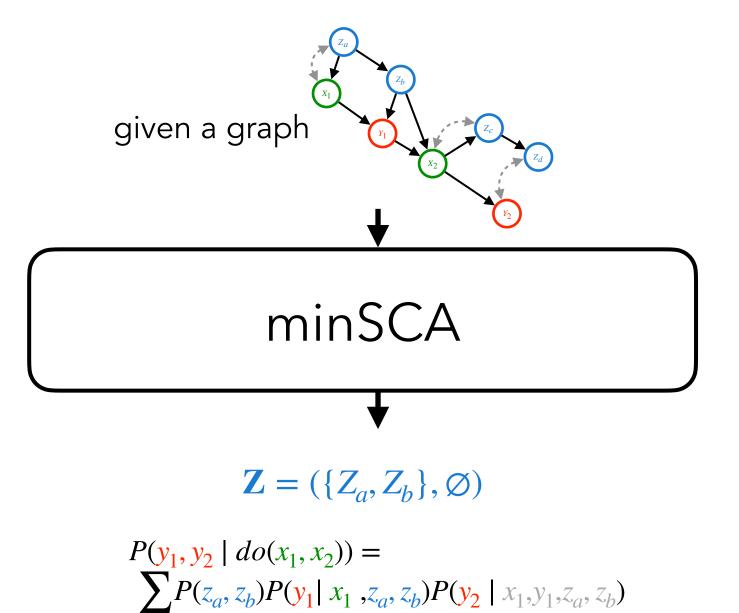
given a graph and a covartiate set $Z = (\{Z_a, Z_b\}, \{Z_c, Z_d\})$ \downarrow 1. $Z_2 = \{Z_c, Z_d\}$ does *not* disturb all local proper causal paths. 2. $Z_2 = \{Z_c, Z_d\}$ blocks all paths in the subgraph.

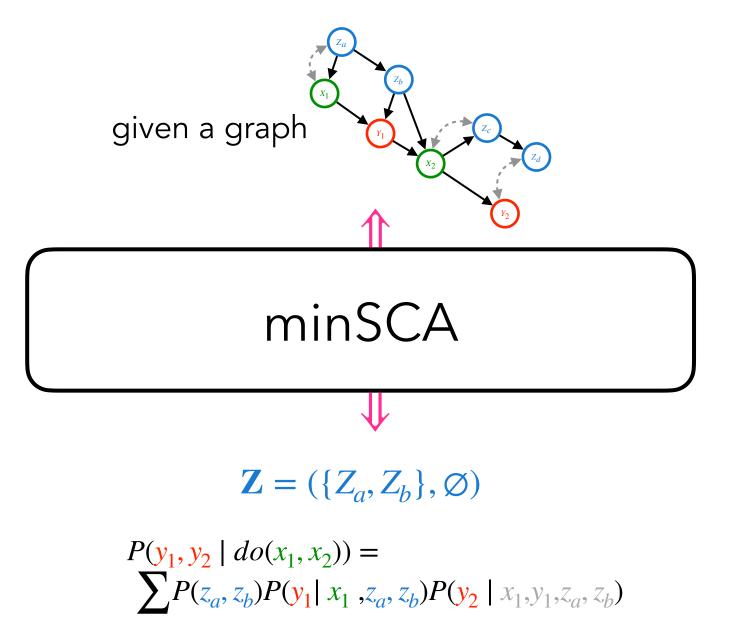


given a graph and a covartiate set $Z = (\{Z_a, Z_b\}, \{Z_c, Z_d\})$ \downarrow 1. $Z_2 = \{Z_c, Z_d\}$ does *not* disturb all local proper causal paths. 2. $Z_2 = \{Z_c, Z_d\}$ blocks all paths in the subgraph.

 $Z_2 = \emptyset$ also satisfies the second condition!







Conclusion

Conclusion

Sequential Adjustment Criterion (SAC), a <u>sound and complete</u> criterion for sequential covariate adjustment.

An algorithm **minSCA** for identifying a minimal sequential covariate adjustment set ensuring that no unnecessary vertices are included.

Contributions

