

Structural Causal Bandits under Markov Equivalence

Min Woo Park, Andy Arditi, Elias Bareinboim, Sanghack Lee

Advisor Prof. Sanghack Lee, Causality Lab, SNU Apr 18th, 2025

Contents

- Causality Lab 1
- 2 Background: Structural Causal Bandits
- 23 Ours4 Conclusion

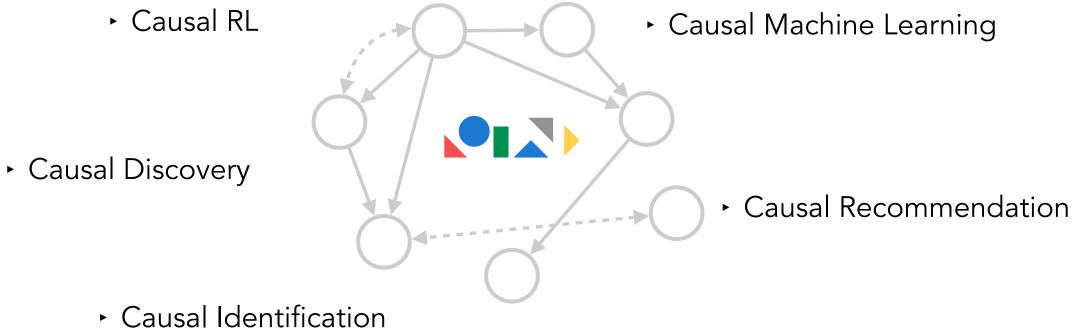
Causality Lab

Causality Lab

Causal Representation Learning

Causal Bandit

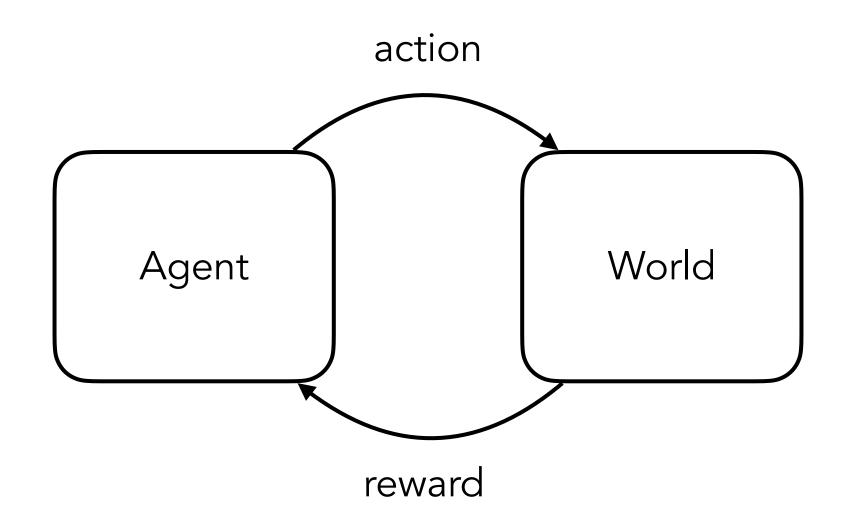
Causal NLP



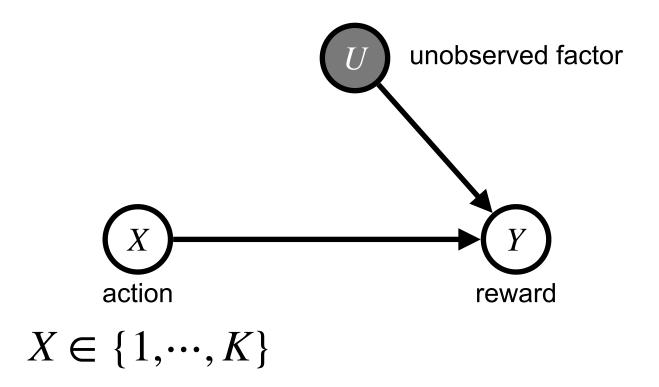
Causal Estimation

- Causal Fairness
- Causal Explainability

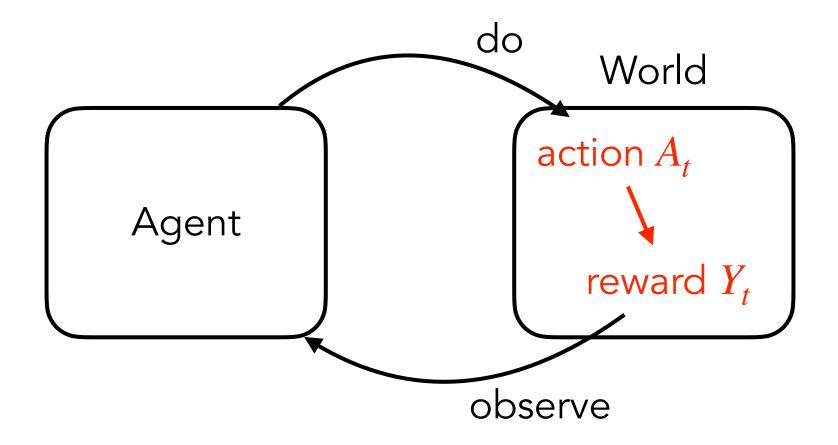
Multi-Armed Bandits



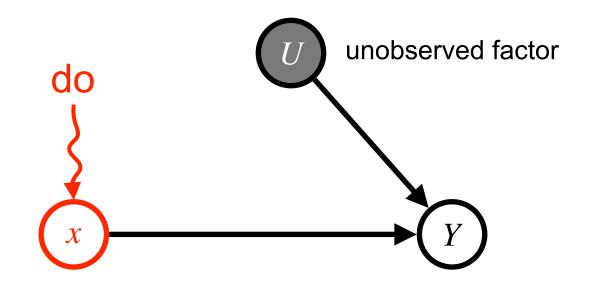
Graphical Understanding of Standard MAB



Multi-Armed Bandits through Causal Lens

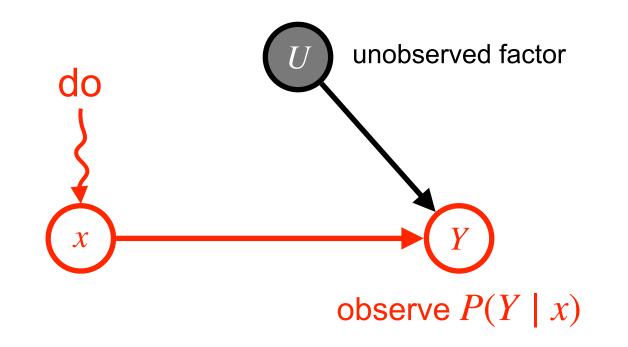


Graphical Understanding of Standard MAB



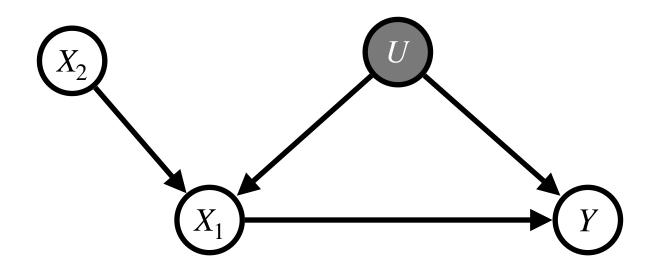
Playing an arm A_t is setting X to x (called do), and observing Y.

Graphical Understanding of Standard MAB



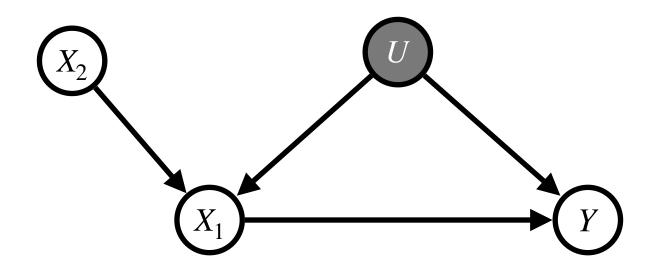
Playing an arm A_t is setting X to x (called do), and observing Y.

Graphical Understanding of Causal MAB



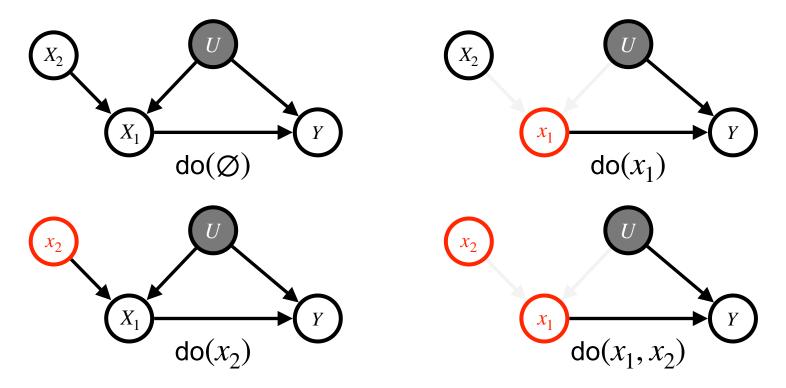
Q. How many **arms** are there? (We can control 2 binary variables, X_1 and X_2).

Graphical Understanding of Causal MAB



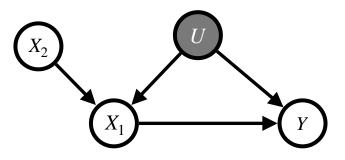
Q. How many **arms** are there? (We can control 2 binary variables, X_1 and X_2). **A**. Nine. We need to choose a set among $\{\emptyset, \{X_1\}, \{X_2\}, \{X_1, X_2\}\}$.

Graphical Understanding of Causal MAB



Q. How many **arms** are there? (We can control 2 binary variables, X_1 and X_2). **A**. Nine. We need to choose a set among $\{\emptyset, \{X_1\}, \{X_2\}, \{X_1, X_2\}\}$. $\therefore 1+2+2+4=9$

Structural Causal Bandits

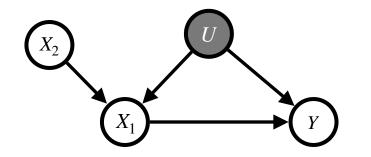


Intervention Sets all subsets of V except Y. $\emptyset, \{X_1\}, \{X_2\}, \{X_1, X_2\}$

Arms all possible values for intervention sets $do(\emptyset), do(X_1 = 0), do(X_1 = 1), \cdots$

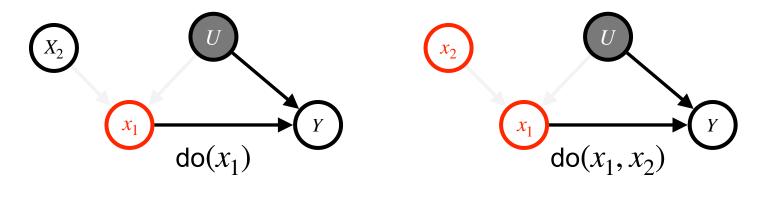
Reward
$$\mu_{\mathbf{x}} \triangleq \mathbb{E}[Y \mid do(\mathbf{x})] = \sum_{y} yP(y \mid do(\mathbf{x}))$$

Structural Causal Bandits



Goal: Remove actions that is (1) redundant or (2) cannot be optimal based on given causal diagram.

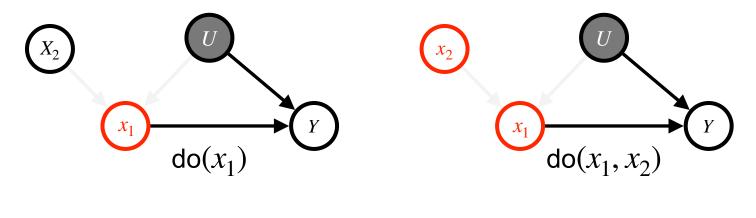
Structural Property 1: Equivalence



 $\mu_{x_1} = \mu_{x_1, x_2}$

Implication: prefer playing $do(x_1)$ to playing $do(x_1, x_2)$.

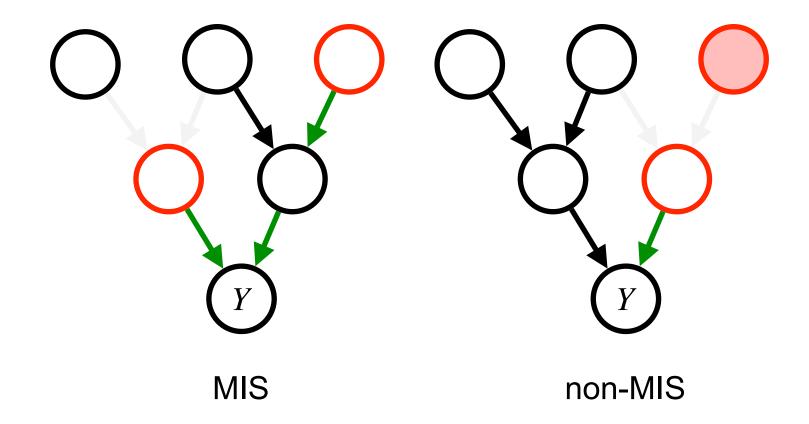
Structural Property 1: Equivalence



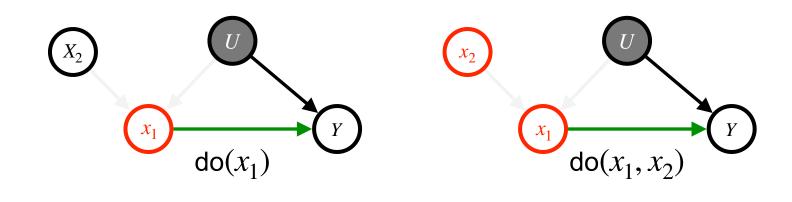
 $\mu_{x_1} = \mu_{x_1, x_2}$

Implication: prefer playing $do(x_1)$ to playing $do(x_1, x_2)$. Definition: *Minimal* Intervention Set (MIS) Graphical condition: All variables in **X** are ancesters of *Y*.

Minimal Intervention Set: Metal Picture

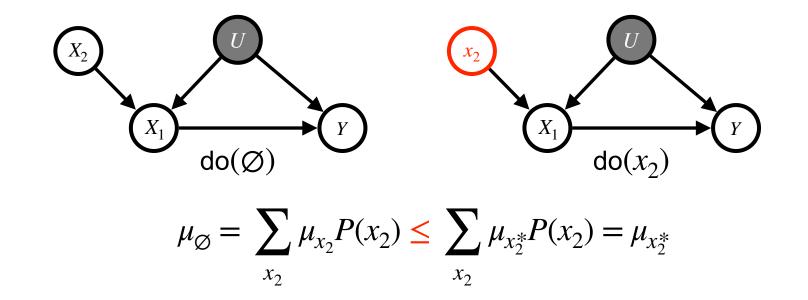


Minimal Intervention Set: Mental Picture



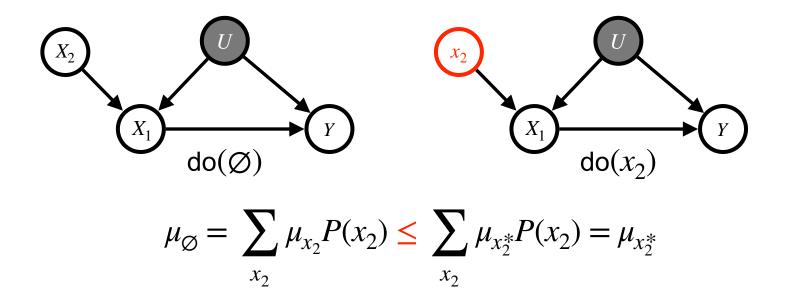
non-MIS

Structural Property 2: Partial-orderedness



Implication: prefer playing $do(x_2)$ to playing $do(\emptyset)$

Structural Property 2: Partial-orderedness

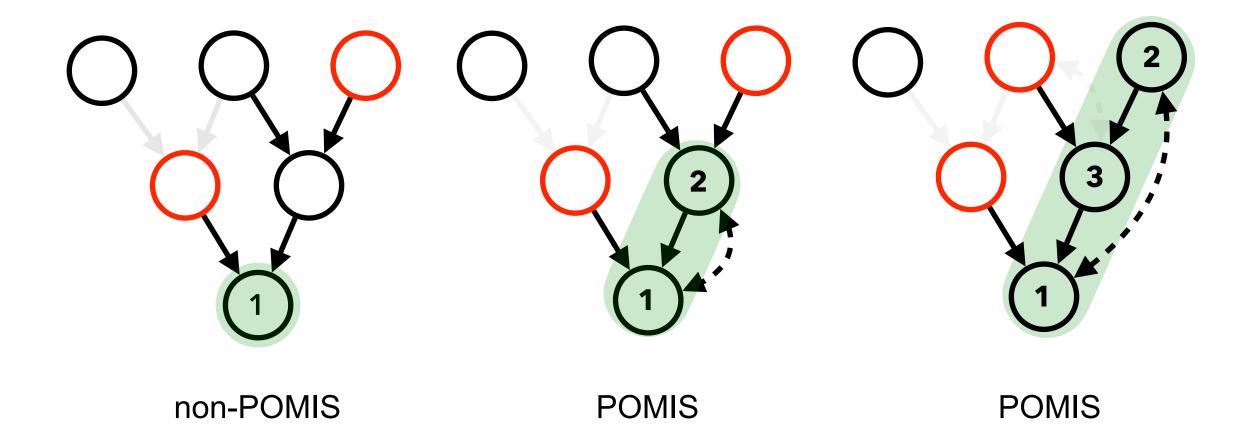


Implication: prefer playing $do(x_2)$ to playing $do(\emptyset)$

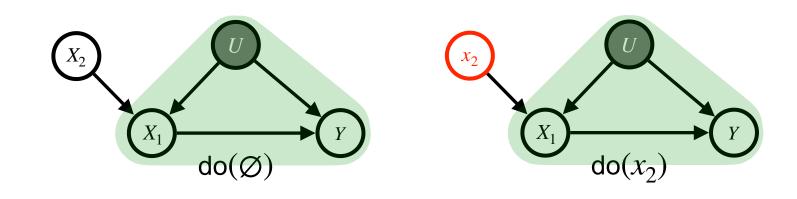
Definition: *possibly-optimal* Minimal Intervention Set (POMIS)

Graphical condition: All variables in X are parent of minimal closed mechanism under (1) descendant and (2) confounded.

Possibly-Optimal Minimal Intervention Set: Mental Picture



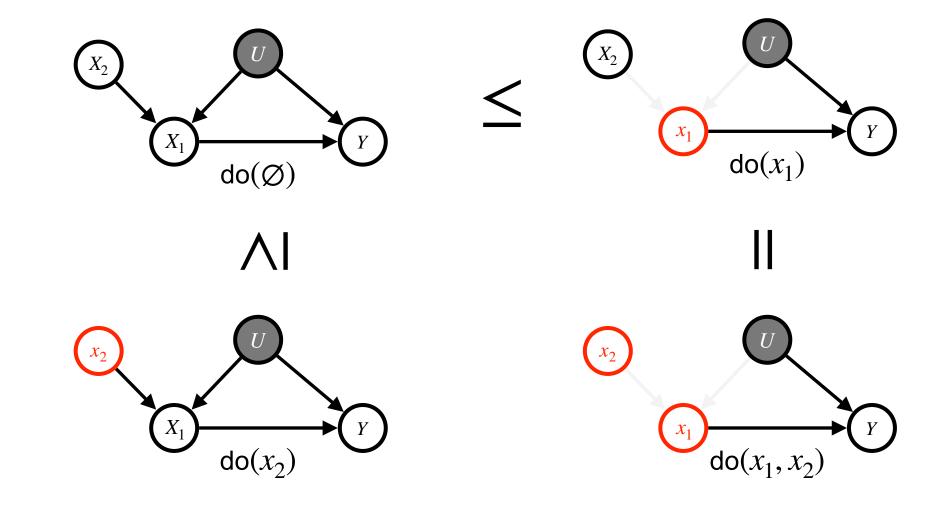
Minimal Intervention Set: Mental Picture



non-POMIS

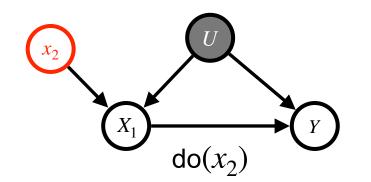
POMIS

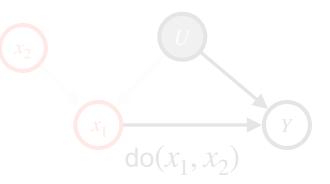
Structural Relationships between Intervention Sets



Structural Relationships between Intervention Sets

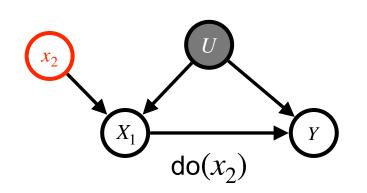
Playing an arms $do(x_1)$ and $do(x_2)$ is sufficient!

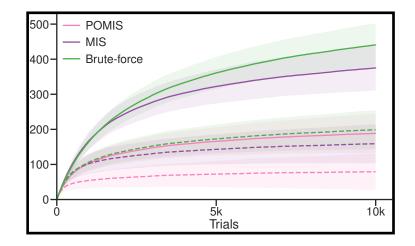




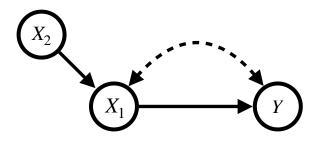
Structural Relationships between Intervention Sets

Playing an arms $do(x_1)$ and $do(x_2)$ is sufficient!



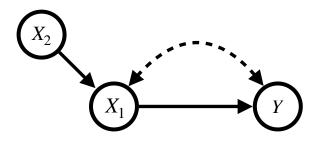


Motivation



A key assumption is that the agent has <u>access to a causal diagram</u> representing the target system. **However**, this is often violated.

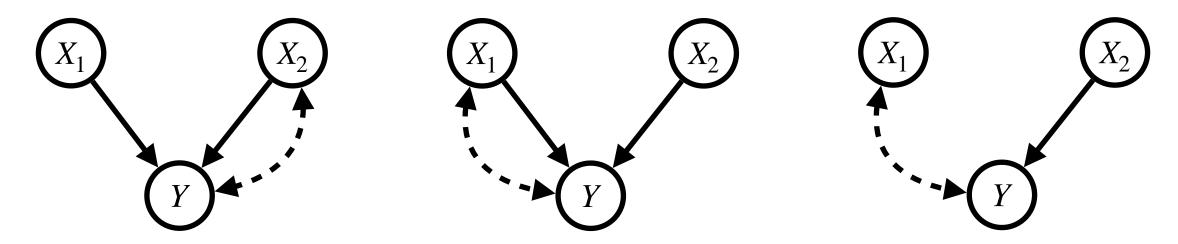
Contribution



A key assumption is that the agent has <u>access to a causal diagram</u> representing the target system. **However**, this is often violated.

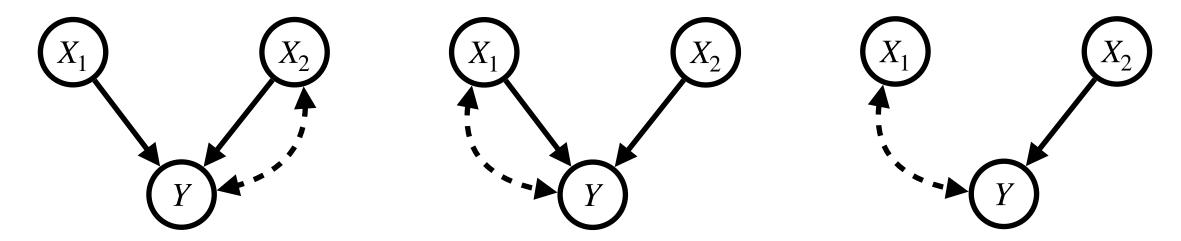
We assume access to a graph represening a Markov Equivalence Class, called a PAG (Partial Ancestral Graph) rather then a causal diagram.

Markov Equivalence Class

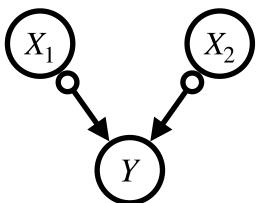


They share (1) the same independence statement $X_1 \perp _d X_2$.

Markov Equivalence Class

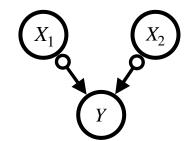


They share (1) the same independence statement $X_1 \perp _d X_2$.



The graph is called as a PAG (Partial Ancestral Graph).

Structural Causal Bandits under Markov Equivalence



Goal: Remove unnecessary actions that cannot be optimal (i.e., non-POMIS) under any underlying causal diagram.

Definitely Minimal Intervention Sets for PAG

$$\begin{array}{c|c} X_1 & X_2 & \exists & X_1 & X_2 \\ & & & \\ Y & & \\ \end{array} \text{ is a DMIS} \Leftrightarrow & & \\ & & & \\ Y & & \\ \end{array} \text{ such that } \end{array}$$

Definition: A set is a Definitely Minimal Intervention Set (DMIS) if there exists a causal diagram under which it is an MIS.

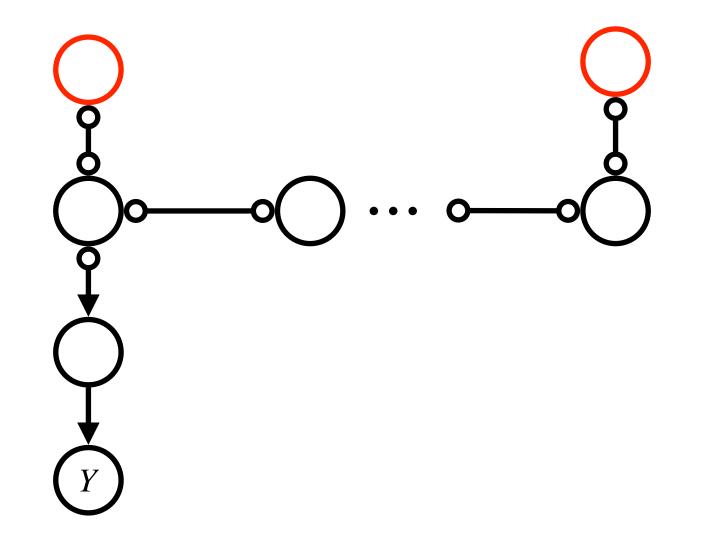
Definitely Minimal Intervention Sets for PAG

$$\begin{array}{c|c} X_1 & X_2 & \exists & X_1 & X_2 \\ & & & \\ Y & & \\ \end{array} \text{ is a DMIS} \Leftrightarrow & & \\ & & & \\ Y & & \\ \end{array} \text{ such that } \end{array}$$

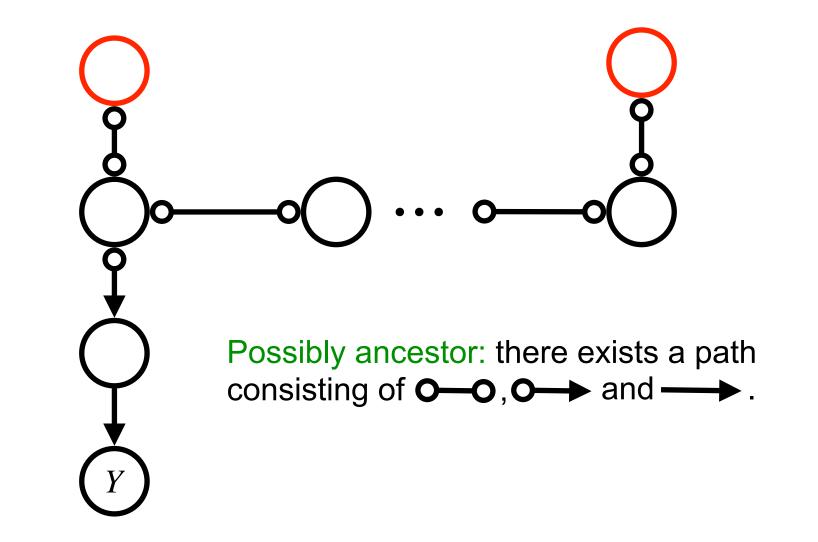
Definition: A set is a Definitely Minimal Intervention Set (DMIS) if there exists a causal diagram under which it is an MIS.

Graphical condition: All variables in \mathbf{X} are (1) possibly ancesters of Y. and (2) not relevant.

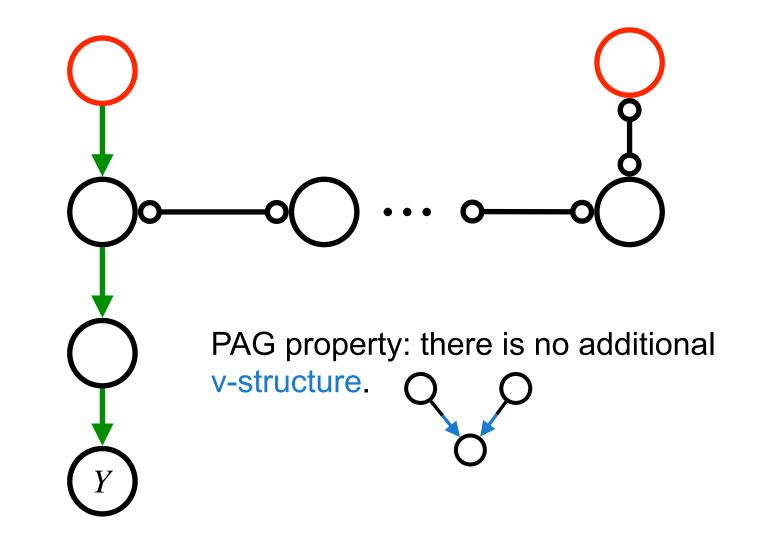
Definitely Minimal Intervention Set: Mental Picture

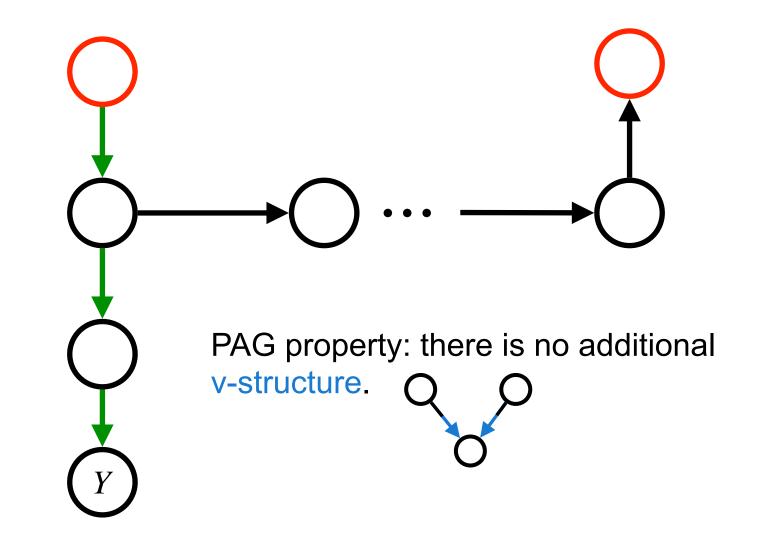


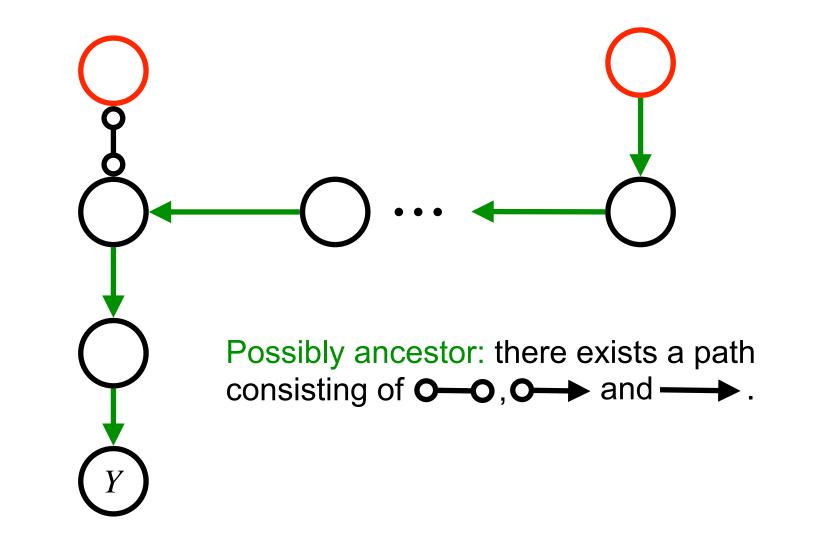
Definitely Minimal Intervention Set: Mental Picture

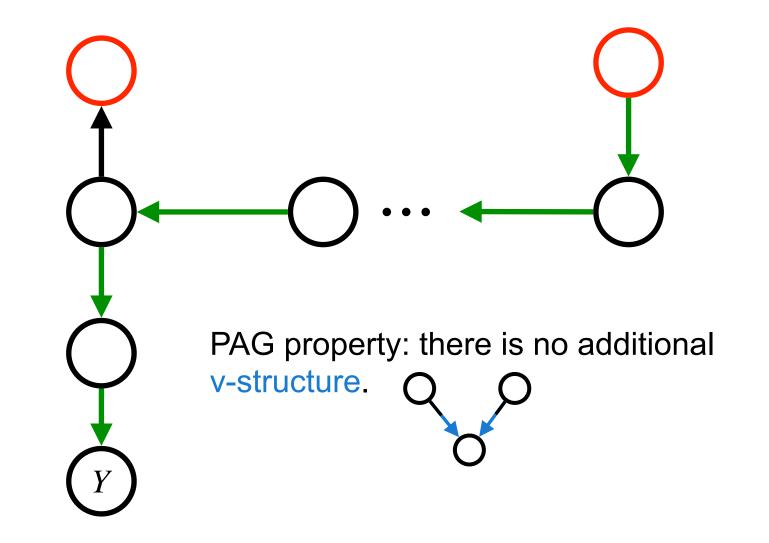


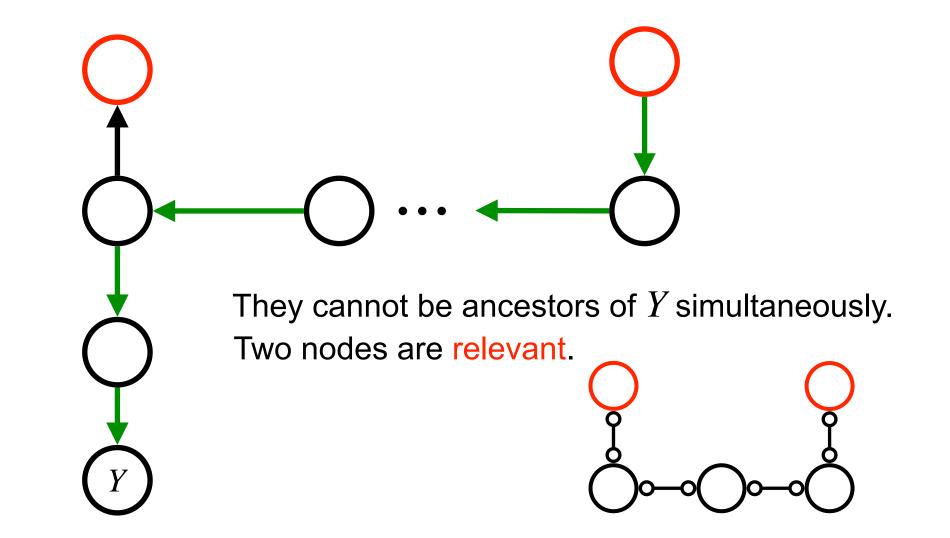
Definitely Minimal Intervention Set: Mental Picture



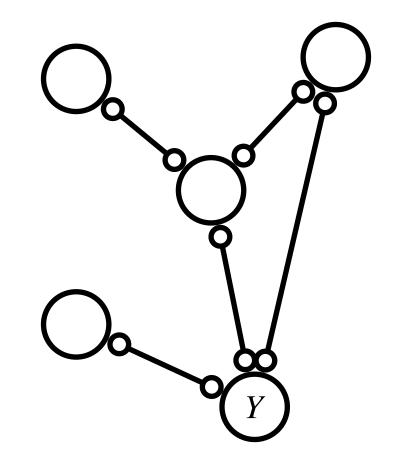




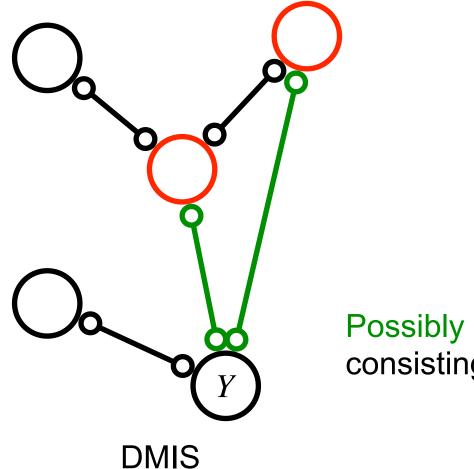




Definitely Minimal Intervention Set: Example

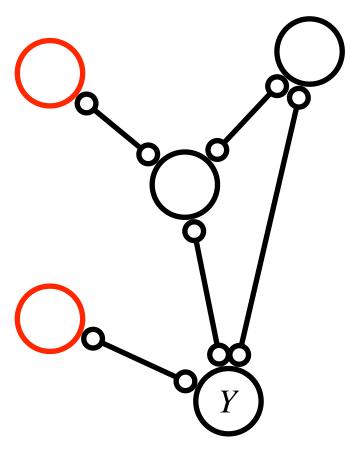


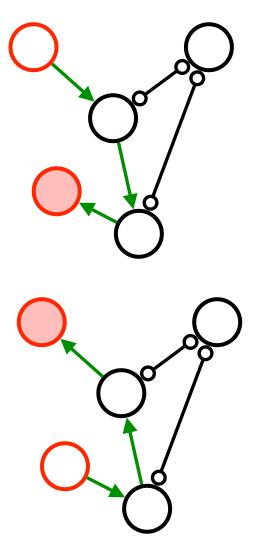
Definitely Minimal Intervention Set: Example



Possibly ancestor: there exists a path consisting of \mathbf{O} — \mathbf{O} , \mathbf{O} — $\mathbf{\bullet}$ and —— $\mathbf{\bullet}$.

Definitely Minimal Intervention Set: Example





Two nodes are relevant. non-DMIS

Possibly-Optimal Minimal Intervention Sets for PAG

$$\begin{array}{c|c} X_1 & X_2 & \exists & X_1 & X_2 \\ & & & \\ Y & & \\ \end{array} \text{ is a POMIS} \Leftrightarrow & & \\ & & & \\ Y & & \\ \end{array} \text{ such that } \end{array}$$

Definition: A set is a Possibly-Opimal Minimal Intervention Set (POMIS) if there exists a causal diagram under which it is an POMIS.

Possibly-Optimal Minimal Intervention Sets for PAG

$$\begin{array}{c|c} X_1 & X_2 & \exists & X_1 & X_2 \\ & & & \\ Y & & \\ \end{array} \text{ is a POMIS} \Leftrightarrow & & \\ & & & \\ Y & & \\ \end{array} \text{ such that } \end{array}$$

Definition: A set is a Possibly-Opimal Minimal Intervention Set (POMIS) if there exists a causal diagram under which it is an POMIS.

Graphical condition: All variables in X are parent of minimal closed mechanism under (1) possibly descendant and (2) possibly confounded in a local transformed graph (around $X \cup \{Y\}$).

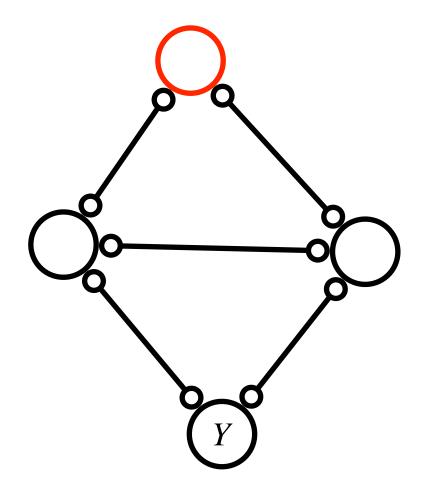
Possibly-Optimal Minimal Intervention Sets for PAG

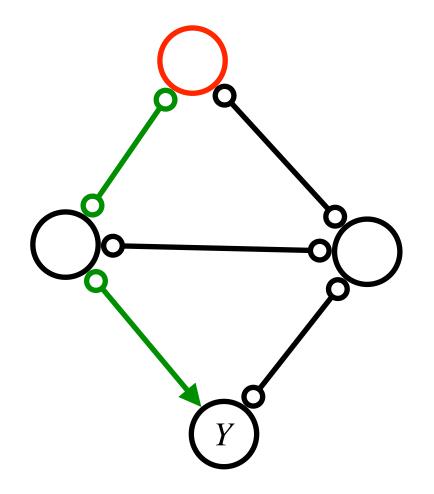
$$\begin{array}{c|c} X_1 & X_2 & \exists & X_1 & X_2 \\ & & & \\ Y & & \\ \end{array} \text{ is a POMIS} \Leftrightarrow & & \\ & & & \\ Y & & \\ \end{array} \text{ such that } \end{array}$$

Definition: A set is a Possibly-Opimal Minimal Intervention Set (POMIS) if there exists a causal diagram under which it is an POMIS.

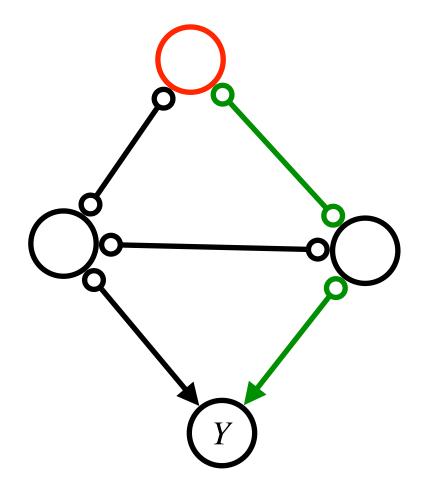
Graphical condition: All variables in X are parent of minimal closed mechanism under (1) possibly descendant and (2) possibly confounded in a local transformed graph (around $X \cup \{Y\}$).

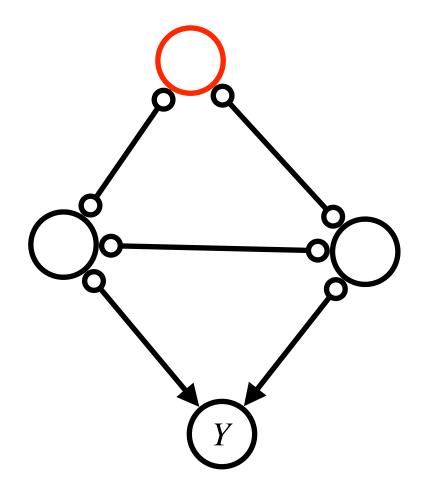
i.e., a graph in which all represented causal diagrams have ${f X}$ as a MIS.

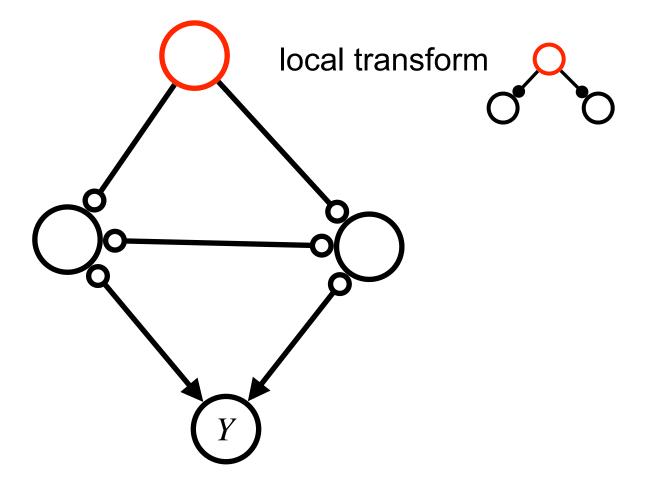


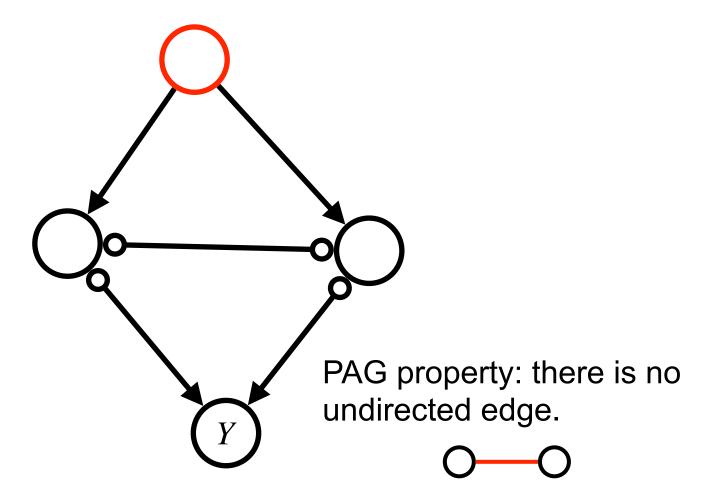


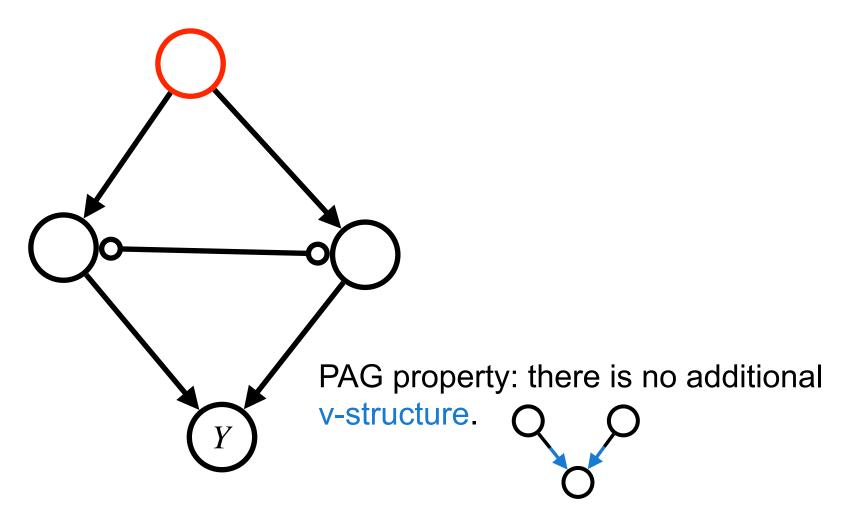
Proposition: Every uncovered proper possibly-directed path ends with an arrowhead ● ____▶.

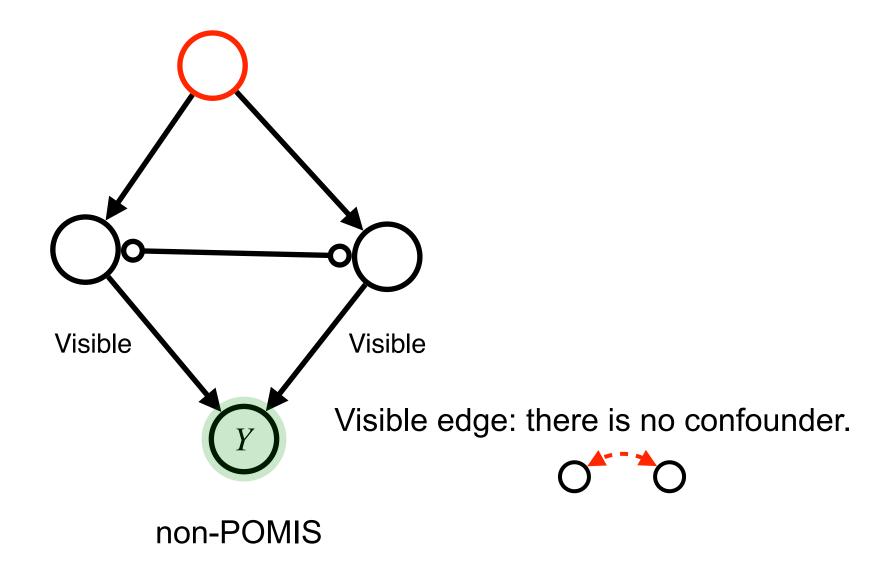


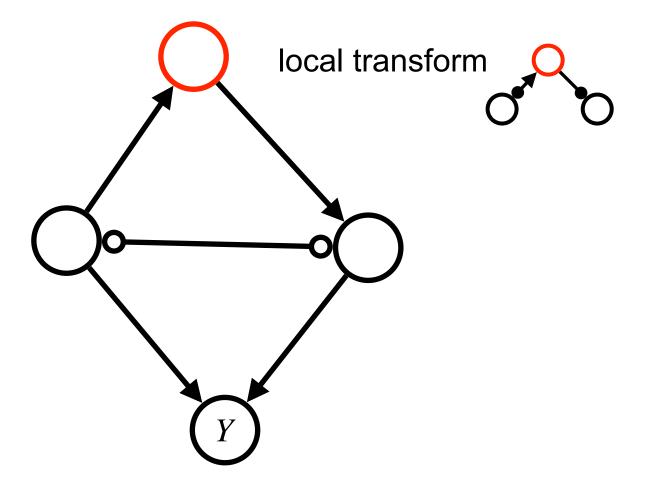


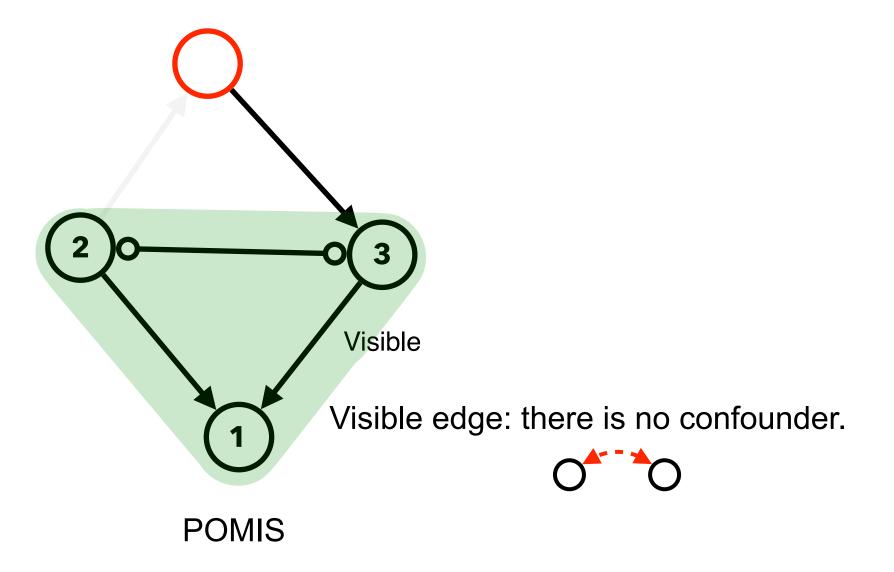


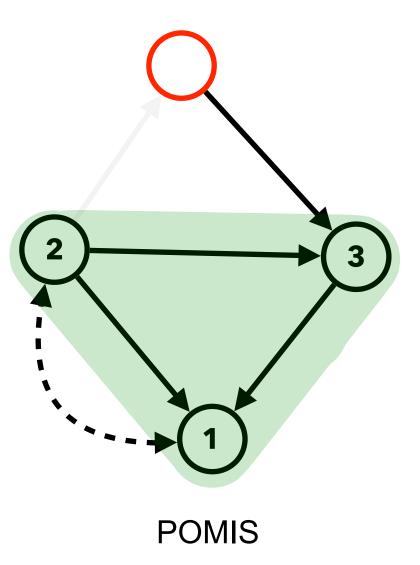




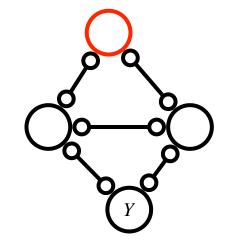






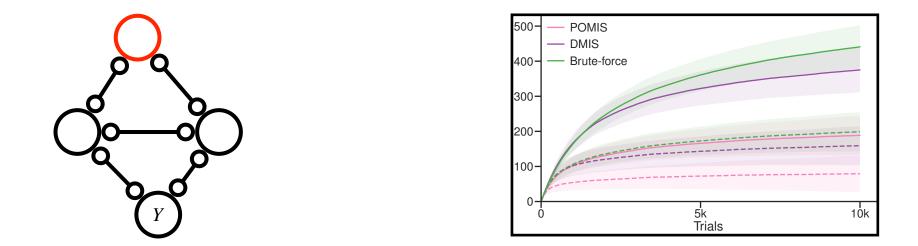


Conclusion



Given a PAG, you do not need to enumerate *all* causal diagrams conforming the PAG to compute **POMIS**!

Conclusion



Given a PAG, you do not need to enumerate *all* causal diagrams conforming the PAG to compute **POMIS**!

Playing *only* the arms corresponding to these **POMISs** is sufficient.

Reference

Structural Causal Bandits: Where to Intervene?

Sanghack Lee and Elias Bareinboim NeurIPS 2018, <u>https://causalai.net/r36.pdf</u>

Structural Causal Bandits under Markov Equivalence

Min Woo Park, Andy Ardity, Elias Bareinboim and Sanghack Lee https://causalai.net/r122.pdf