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Multi-Armed Bandits
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Graphical Understanding of Standard MAB
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Multi-Armed Bandits through Causal Lens
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Graphical Understanding of Standard MAB

unobserved factor

do

Playing an arm A, is setting X to x (called do), and observing Y.



Graphical Understanding of Standard MAB

unobserved factor

do

observe P(Y | x)

Playing an arm A, is setting X to x (called do), and observing Y.
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Graphical Understanding of Causal MAB

O

Q. How many arms are there? (We can control 2 binary variables, X; and X,).
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Graphical Understanding of Causal MAB

O

Q. How many arms are there? (We can control 2 binary variables, X; and X,).
A. Nine. We need to choose a setamong { &, { X, }, { X}, { X, X5} }.
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Graphical Understanding of Causal MAB

@\O/a\G) @@a\@

do(@) do(x;)
X, % X %
O do(x,) C>do(xl, X5)

Q. How many arms are there? (We can control 2 binary variables, X; and X,).

A. Nine. We need to choose a setamong { &, { X, }, { X}, { X, X5} }.
C1+2 + 2 +4=9
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Structural Causal Bandits

@\@

Intervention Sets all subsets of V except Y.
@a {Xl}a {X2}9 {XlaXQ}

Arms all possible values for intervention sets
do(@),do(X; =0),do(X; = 1), --

Reward p, 2 E[Y | do(x)] = Z yP(y | do(x))
y
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Structural Causal Bandits

N

)

Goal: Remove actions that is (1) redundant or (2) cannot be optimal based on
given causal diagram.
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Structural Property 1: Equivalence

© %@
© ©

do(x;) do(xy, X5)

’uxl o ’uxl’x2

Implication: prefer playing do(x,) to playing do(x;, x,).
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Structural Property 1: Equivalence

© @\@@
© ©

do(x;) do(xy, X5)

’uxl o ’uxl’x2

Implication: prefer playing do(x,) to playing do(x;, x,).
Definition: Minimal Intervention Set (MIS)

Graphical condition: All variables in X are ancesters of Y.
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Minimal Intervention Set: Metal Picture

O O
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MIS non-MIS
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Minimal Intervention Set: Mental Picture

® @\@@ %
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do(x;) do(xy, X5)

MIS non-MIS
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Structural Property 2: Partial-orderedness

@\@/a\@ 5

do(@) do(x,)

Ha = Z o, P(Xy) < 2 o P (X)) = phs
X, X,

Implication: prefer playing do(x,) to playing do(Q&)
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Structural Property 2: Partial-orderedness

@\@/a\@ 5

do(D) do(x,)

Ha = Z o, P(Xy) < 2 o P (X)) = phs
X2 X2

Implication: prefer playing do(x,) to playing do(&)
Definition: possibly-optimal Minimal Intervention Set (POMIS)

Graphical condition: All variables in X are parent of minimal closed mechanism
under (1) descendant and (2) confounded.
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Possibly-Optimal Minimal Intervention Set: Mental Picture
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non-POMIS POMIS POMIS
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Minimal Intervention Set: Mental Picture

@\@/a\»@ @\@/a\»@

do(Q) do(x,)

non-POMIS POMIS
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Structural Relationships between Intervention Sets
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do(x,) do(x;, x5)
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Structural Relationships between Intervention Sets

® ﬁ\@
O—

do(x,)

Playing an arms do(x;) and do(x,) is sufficient!
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Structural Relationships between Intervention Sets

® ﬁ\@
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do(x,)

Playing an arms do(x;) and do(x,) is sufficient!
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Motivation

A key assumption is that the agent has access to a causal diagram

representing the target system. However, this is often violated.
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Contribution

A key assumption is that the agent has access to a causal diagram
representing the target system. However, this is often violated.

We assume access to a graph represening a Markov Equivalence Class,
called a PAG (Partial Ancestral Graph) rather then a causal diagram.

28



Markov Equivalence Class

They share (1) the same independence statement X, 1L ; X,.
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Markov Equivalence Class

The graph is called as a PAG (Partial Ancestral Graph).

30



Structural Causal Bandits under Markov Equivalence

Goal: Remove unnecessary actions that cannot be optimal (i.e., non-POMIS)
under any underlying causal diagram.
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Definitely Minimal Intervention Sets for PAG

7
) () ) ()

isa DMIS & » such that °

° '

Definition: A setis a Definitely Minimal Intervention Set (DMIS) if
there exists a causal diagram under which
itis an MIS.
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Definitely Minimal Intervention Sets for PAG

=
) (o) () ()
isa DMIS & .+ such that

° ' E

Definition: A setis a Definitely Minimal Intervention Set (DMIS) if

there exists a causal diagram under which
itis an MIS.

Graphical condition: All variables in X are (1) possibly ancesters of Y.
and (2) not relevant.
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Definitely Minimal Intervention Set: Mental Picture
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Definitely Minimal Intervention Set: Mental Picture

Possibly ancestor: there exists a path
consisting of O—O,0—p and —p .
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Definitely Minimal Intervention Set: Mental Picture

PAG property: there is no additional

v-structure. O\ O/O
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Definitely Minimal Intervention Set: Mental Picture

PAG property: there is no additional

v-structure. O\ O/O
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Definitely Minimal Intervention Set: Mental Picture

Lo

Possibly ancestor: there exists a path
consisting of O—O,0—p and —p .
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Definitely Minimal Intervention Set: Mental Picture

PAG property: there is no additional
v-structure. Q\@/o

39



Definitely Minimal Intervention Set: Mental Picture

They cannot be ancestors of Y simultaneously.
Two nodes are relevant. O
éo_@o_o
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Definitely Minimal Intervention Set: Example

a1



Definitely Minimal Intervention Set: Example

Possibly ancestor: there exists a path
consisting of O—O,0—p and —p .

DMIS
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Definitely Minimal Intervention Set: Example

O

Two nodes are relevant.
non-DMIS
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Possibly-Optimal Minimal Intervention Sets for PAG

HORMO OO

isa POMIS & » such that °

° '

Definition: A setis a Possibly-Opimal Minimal Intervention Set (POMIS)
if there exists a causal diagram under which it is an POMIS.
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Possibly-Optimal Minimal Intervention Sets for PAG

HORMO OO

isa POMIS & » such that °

° '

Definition: A setis a Possibly-Opimal Minimal Intervention Set (POMIS)
if there exists a causal diagram under which it is an POMIS.

Graphical condition: All variables in X are parent of minimal closed mechanism
under (1) possibly descendant and (2) possibly confounded

in a local transformed graph (around X U {Y}).
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Possibly-Optimal Minimal Intervention Sets for PAG

HORMO OO

isa POMIS & » such that

° ' H

Definition: A setis a Possibly-Opimal Minimal Intervention Set (POMIS)
if there exists a causal diagram under which it is an POMIS.

Graphical condition: All variables in X are parent of minimal closed mechanism
under (1) possibly descendant and (2) possibly confounded
in a local transformed graph (around X U {Y}).

i.e., a graph in which all represented causal diagrams have X as a MIS.

46



Possibly-Optimal Minimal Intervention Set: Mental Picture
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Possibly-Optimal Minimal Intervention Set: Mental Picture

Proposition: Every uncovered proper possibly-directed path
ends with an arrowhead @&—p .
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Possibly-Optimal Minimal Intervention Set: Mental Picture

49



Possibly-Optimal Minimal Intervention Set: Mental Picture

50



Possibly-Optimal Minimal Intervention Set: Mental Picture

local transform O/O\O
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Possibly-Optimal Minimal Intervention Set: Mental Picture

PAG property: there is no
undirected edge.

O—oO
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Possibly-Optimal Minimal Intervention Set: Mental Picture

PAG property: there is no additional

v-structure. Q\O /Q
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Possibly-Optimal Minimal Intervention Set: Mental Picture

Visible Visible

Visible edge: there is no confounder.
A -
O" 'O

non-POMIS
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Possibly-Optimal Minimal Intervention Set: Metal Picture

local transform O“Q\O
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Possibly-Optimal Minimal Intervention Set: Mental Picture

Visible

Visible edge: there is no confounder.

oO" 'O

POMIS

56



Possibly-Optimal Minimal Intervention Set: Mental Picture

POMIS
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Conclusion

Given a PAG, you do not need to enumerate all causal diagrams
conforming the PAG to compute POMIS!



Conclusion
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Given a PAG, you do not need to enumerate all causal diagrams
conforming the PAG to compute POMIS!

Playing only the arms corresponding to these POMISs is sufficient.
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